
7 AD-159 542 THE DESIGN ND IPLEMENTTION OF A HIERRCHICL
1/3

INTERFACE FOR THE MULTI-LINGUAL DATABASE SYSTEM(U)

NAVAL POSTGRADURTE SCHOOL MONTEREY CAEhEEEE1iUNCLSSIFIED T P BENSON ET AL. JUN 85 F/G 9/2 L

7-

111111
2

L.25 11111.4 1.6

MICR~OCOPY RESOLUTION TEST CHART
ArAIOAL RAU Or S7ANARfOS -'4963-

w W~ w 0

NAVAL POSTGRADUATE SCHOOL
Monterey, California

In
o .-

DTICi
(7 " CTE "-

SLP 2 4 1985
8,50

THESIS
THE DESIGN AND IMPLEMENTATION OF A

HIERARCHICAL INTERFACE FOR THE
MULTI-LINGUAL DATABASE SYSTEM

by

Timothy P. Benson
and

LU Gary L. Wentz

June 1985

Thesis Advisor: D. K. Hsiao

"-: Approved for public release; distribution is unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) ".__ _ _

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSREPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The Design and Implementation of a Master's Thesis
Hierarchical Interface for the Tune 1985
Multi-Lingual Database System 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(e)

Timothy P. Benson
and Gary L. Wentz

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, CA 93943-5100

I1. CONT'ROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943-5100 13. 4 61ER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thl report)

UNCLASSIFIED

IS,. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20. If different from Report)

I6. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on ,ererse side It neceesary and Identify by block number)

Multi-lingual Database System (MLDS), Multi-backend Database
System (MBDS), Hierarchical Data Model, Data Language I (DL/I)
Attribute=ba~ed Data Language (ABDL), Language Interface,
Information Management System (IMS)

20 ABSTRACT fContinue on reeres side It neceseary end Identify by block number)

Traditionally, the design and implementation of a conventional
database system begins with the choice of a data model followed
by the specification of a model-based data language. Thus, the
database system is restricted to a single data model and a
.r"ecific data language. An alternative to this traditional
approach to database-system development is the multi-lingual
database system (MLDS). This alternative approach enables the

I ont inued)

--DU FoM, 1473 EDO ,OF o NOV65 IS OBSOLETE

S N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Daa Entered)

," .".- ,. - .. .--.-

SECURITY CLASSIFICATION OF THIS PAGE (3km D4a E1n1M.

ABSTRACT (Continued)

user to access and manage a large collection of-databases, via
several data models and their corresponding data languages,
without the aforementioned restriction.
In this thesis, we present the specification and implementation
of a hierarchical/DL/I language interface for the MLDS.
Specifically, we present the specification and implementation of
an interface which translates DL/I language calls into attribute-
based data language (ABDL) requests. We describe the software
engineering aspects of our implementation and an overview of the
four modules which comprise our hierarchical/DL/I language inter-
face.

S N 0 102- LF- 0 14-6601

2 SECURITY CLASSIFICATION or THIS PAaame(3n oatsantrwE)

.. "

.

-

Approved for Public Release, Distribution Unlimited.

The Design and Implementation of a
Hierarchical Interface for the
Multi-Lingual Database System

by

Timothy.P. Benson

Captain, United States Marine Corps
B.S., United States Naval Academy, 1978

and Acc~ssion For

Gary L. Wentz DT1C
Captain, United States Marine Corps Ez'J' '[

B.S., University of Kansas, 1978 Jul:tt, "

Submitted in partial fulfillment of the By-__requirements for the degree of Ditr iut> 1

Ava il:Aj 11iitv 0c-h

MASTER OF. SCIENCE IN COMPUTER SCIENCE sA ii and/or

from the Dist Special

NAVAL POSTGRADUATE SCHOOL

June 1985

Authors: __._op.. : 'i}

Approved by: "'/ __ - ":
--

Authors:~- --------------------).d\ -.P

/ A.Dem neond Reader

Department of Computer Science

Kneale T. Ma
Dean of Information and Policy iences

..
-... ,-... ~- * . .- -.

.

7. 7-

ABSTRACT

-.Traditionally, the design and implementation of a

conventional database system begins with the selection of a

data model, followed by the specification of a model-based

data language. An-alternative to this traditional approach

to database system development is the multi-lingual database

system (MLDS). This alternative approach affords the user

the ability to access and manage a large collection of

databases via several data models and their corresponding

data languages.

".-..-n- this thesis we presentthe specification and

implementation of a hierarchical/DL/I language interface for

the MLDS. Specifically, ie present' the specification and

implementation of an interface which translates DL/I data

language calls into attribute-based data language '1BDL-)

requests. Ate describethe software engineering aspects of

our implementation and an overview of the four modules which

comprise ou DL/I language interface. Al

4

TABLE OF CONTENTS

I. INTRODUCTION 10

A. MOTIVATION 10

B. THE MULTI-LINGUAL DATABASE SYSTEM 13

C. THE KERNEL DATA MODEL AND LANGUAGE 15

D. THE MULTI-BACKEND DATABASE SYSTEM 16

E. THESIS OVERVIEW 16

II. SOFTWARE ENGINEERING

OF A LANGUAGE INTERFACE 20

A. DESIGN GOALS 20

B. AN APPROACH TO THE DESIGN 21

1. The Implementation Strategy 21

2. Techniques

for Software Development 22

3. Characteristics

of the Interface Software 24

C. A CRITIQUE OF THE DESIGN 26

D. THE DATA STRUCTURES 28

1. Data Shared by All Users 2

2. Data Specific to Each User 32

E. THE ORGANIZATION

OF THE NEXT FOUR CHAPTERS 5...............35

III THE LANGUAGE INTERFACE LAYER (LIL) 36

A. THE LIL DATA STRUCTURES 37

B. FUNCTIONS AND PROCEDURES 39

5

1. Initialization........................ 39

2. Creating the Transaction List.........40

3. Accessing the Transaction List ... 41

a. Sending DBIs to the KMS........... 42

b. Sending DL/I Requests

to the KMS.......................... 42

4. Calling the KC.......................... 43

5. Wrapping-up............................. 44

IV. THE KERNEL MAPPING SYSTEM (KMS)................45

A. AN OVERVIEW OF THE MAPPING PROCESS ... 45

1. The KMS Parser / Translator........... 45

2. The KMS Data Structures................ 47

B. FACILITIES PROVIDED

BY THE IMPLEMENTATION...................... 52

1. Database Definitions................... 52

2. Database Manipulations................. 54

* a. The DL/I GET Calls

to the ABDL RETRIRVE............. 5

b. The DL/I GET HOLD Calls

to the ABDL RETRIEVE.............. 61

C. The DL/I DLET

to the ABDL DELETE................. 62

d. The DL/I REPL

to the ABDL UPDATE.................864

e. The DL/I ISRT

to the ABDL INSERT................. 66

6

f. The Mapping Processes:

An Example.......................... 68

g. Segment Search Argument

Command Codes...................... 74

(1) Path Retrieval

(Command Code D)............. 75

(2) Path Insertion

(Command Code D)............. 76

(3) Command Code F................ 76

(4) Command Code V............... 79

3. Semantic Analysis...................... 80

C. FACILITIES NOT PROVIDED

BY THE IMPLEMENTATION......................8E1

1. Interfacing the User...................8(1

2. Segment Insertion

Based on Current Position............. 82

3. Additional SSA Command Codes.......... 83

V. THE KERNEL CONTROLLER...........................8(4

A. THE KC DATA STRUCTURES..................... 87

B. FUNCTIONS AND PROCEDURES................... 95

1. The Kernel Controller.................. 95

2. Creating a New Database................ 96

3. The GU, GN, GNP,

ISRT and REPL Requests................. 96

4. The GHU, GHN

and GHNP Requests...................... 103

7

5. The DLET and SPECRET Requests........ 103

VI. THE KERNEL FORMATTING SYSTEM (KFS)............ 106

A. THE KFS DATA STRUCTURE..................... 106

B. THE FILING OF DL/I RESULTS................ 107

C. THE KFS PROCESS............................ 106

VII. CONCLUSION....................................... 109

APPEND IX A - SCHEMATIC OF THE

MLDS DATA STRUCTURES................... 113

APPENDIX B - THE LIL PROGRAM SPECIFICATIONS........ 131

APPENDIX C - THE KMS PROGRAM SPECIFICATIONS........ 138

APPENDIX D - THE KC PROGRAM SPECIFICATIONS......... 169

APPENDIX E - THE KFS PROGRAM SPECIFICATIONS........ 194

APPENDIX F - THE DL/I USERS* MANUAL................. 195

A. OVERVIEW.................................... 195

B. USING THE SYSTEM........................... 195

1. Processing

Database Descriptions (DBDs).......... 197

2. Processing DL/I Requests.............. 198

C. DATA FORMAT................................. 200

D. RESULTS..................................... 201

LIST OF REFERENCES.................................... 202

INITIAL DISTRIBUTION LIST............................ 204

r - : -- . r- - - - - - . - ? ° r
-

- - - ° - - -

LIST OF FIGURES

Figure 1. The Multi-Lingual Database System 14

Figure 2. The Multi-Backend Database System 17

Figure 3. The Education Database 19

Figure 4. The dbidnode Data Structure 29

Figure 5. The hie_dbidnode Data Structure 29

Figure 6. The hrecnode Data Structure 30

Figure 7. The hattrnode Data Structure 31

Figure 8. The userinfo Data Structure 32

Figure 9. The liinfo Data Structure 33

Figure 10. The dli_info Data Structure 33

Figure 11. The tran_info Data Structure 37

Figure 12. The hiereqinfo Data Structure 38

Figure 13. The hie_kms_info Data Structure 48

Figure 14. Additional KMS Data Structures w. 49

Figure 15. The Sit_info Data Structure. 50

Figure 16. The Hierarchical Database Schema 55

Figure 17. The KMS dml_statement Grammar 70

Figure 18. The dli_info Data Structure 88

Figure 19. The Sit_status_info Data Structure 88

Figure 20. The Sit_info Data Structure 90

Figure 21. The hiefileinfo Data Structure 94

Figure 22. The kfs_hie_info Data Structure 107

Figure 23. The Hierarchical Database Schema

Data Structures 115

Figure 24. The User Data Structures 118

9

I. INTRODUCTION

A. MOTIVATION

During the past twenty years database systems have

been designed and implemented using what we refer to as the

traditional approach. The first step in the traditional

approach involves choosing a data model. Candidate data

models include the hierarchical data model, the relational

data model, the network data model, the entity-relationship

data model, or the attribute-based data model to name a few.

The second step specifies a model-based data language, e.g.,

DL/I for the hierarchical data model, or Daplex for the

entity-relationship data model.

A number of database systems have been developed using

this methodology. For example, IBM has introduced the

Information Management System (IMS) in the sixties, which

supports the hierarchical data model and the hierarchical-

model-based data language, Data Language I (DL/I). Sperry

Univac has introduced the DMS-1100 in the early seventies,

which supports the network data model and the network-

model-based data language, CODASYL Data Manipulation

Language (CODASYL-DML). And more recently, there has been

IBM's introduction of the SQL/Data System which supports the

relational model and the relational-model-based data

10

,Z? '* .'.. -L .. -i '.' ,-. ... i. i . -. - -- - .'.- -. i

language, Structured English Query Language (SQL). The

result of this traditional approach to database system

development is a homogeneous database system that restricts

the user to a single data model and a specific model-based

data language.

An unconventional approach to database system

development, referred to as the Multi-lingual Database

System (MLDS) [Ref. 1], alleviates the aforementioned

restriction. This new system affords the user the ability

to access and manage a large collection of databases via

several data models and their corresponding data languages.

The design goals of the MLDS involve developing a system

that is accessible via a hierarchical/DL/I interface, a

relational/SQL interface, a network/CODASYL interface, and

an entity-relationship/Daplex interface.

There are a number of advantages in developing such a

system. Perhaps the most practical of these involves the

reusability of database transactions developed on an

existing database system. In the MLDS, there is no need for

the user to convert a transaction from one data language to

another. The MLDS permits the running of database

transactions written in different data languages.

Therefore, the user does not have to perform either manual

or automated translation of existing transactions in order

to execute a transaction in the MLDS. The MLDS provides the

11

-'.-'I-' ' ,,a,, ,' m', -'..-.... ".....'-...............-" ...

possesses this characteristic and does not have any hidden

side-effects that could pose problems months or years from

now. As a matter of fact, we have intentionally minimized

the interaction between procedures to alleviate this

problem.

The interface also has to be maintainable. This is

important in light of the fact that almost 70% of all

software life-cycle costs are incurred after the software

becomes operational, i.e., in the maintenance phase. There

are software engineering techniques we employed that have

given the DL/I interface this characteristic. For example,

we require programmers to update documentation of the

interface code when changes are made. Hence, maintenance

programmers have current documentation at all times. The

problem of trying to identify the functionality of a program

with dated documentation is alleviated. We also require the

programmers to update their SSL specification as the code is

being changed. Thus, the SSL specification consistently

corresponds to the actual code. In addition, the data

structures are designed to be general. Thus, it is an easy

task to modify or rectify these structures to meet the

demands of an evolving system.

The research conducted by Demurjian and Hsiao

(Ref. 1) provides a high-level specification of the MLDS.

The thesis written by Weishar tRef. 3) extends the above

work and provides a more detailed specification of a DL/I

We have avoided this option, and instead, used conditional

compilation and diagnostic print statements to aid in the

debugging process. To validate our system we have used a

traditional testing technique; path testing [Ref. 14). We

have checked boundary cases, such as the single and multiple

DL/I ISRT operations. And we have tested those cases

considered "normal". It is noteworthy to mention that

testing, as we have done it, does not prove the system

correct, but may only indicate the absence of problems with

the cases that have been tested.

Characteristics of the Interface Software

In order for the DL/I interface to be successful, we

have realized that it has to be well designed and well

structured. Hence, we are cognizant of certain

characteristics that the interface has to possess.

Specifically, it has to be simple. In other words, it has

to be easy to read and comprehend. The C code we have

written has this characteristic. For instance, we often

write the code with extra lines to avoid shorthand notations

available in C. These extra lines have made the difference

between comprehensible code and cryptic notations.

The interface software also has to be

understandable. This has to be true to the extent that a

maintenance programmer, for example, may easily grasp the

functionality of the interface and the relation between it,

and the other portions of the system. Our software

24

the DL/I interface. Hence, the requirements specification

is derived from the above research.

We have developed the design of the system using the

above specification. A Systems Specification Language (SSL)

[Ref. 12) is used extensively during this phase. The SSL

has permitted us to approach the design from a very high-

level, abstract perspective by:

.M1) enhancing communications among the program team
members,

(2) reducing dependence on any one individual, and,

(3) producing complete and accurate documentation of
the design.

Furthermore, the SSL has allowed us to make an easy

transition from the design phase to the coding phase.

We have used the C programming language [Ref. 13) to

translate the design into executable code. Initially, we

were not conversant in the language. However, our

background in Pascal and the simple syntax of C, have made

it easy for us to learn. The biggest advantage of using C

is in the programming environment that it resides (i.e., the

UNIX operating system). This environment has permitted us

to partition the DL/I interface, and then manage these parts

in an effective and efficient manner. Perhaps, the only

disadvantage with using C is the poor error diagnostics,

having made debugging difficult. There is an on-line

debugger available for use with C, in UNIX, for debugging.

23 %

is then decomposed into its four modules (i.e., LIL, KMS,

KC, and KFS). These modules, in turn, are further

decomposed into the necessary functions and procedures to

accomplish the appropriate tasks.

2. Technigues for Software Development

In order to achieve our design goals, it is

important to employ effective software engineering

techniques during all phases of the software development

life-cycle. These phases, as defined by Ledthrum

[Ref. 11: p. 27), are as follows:

(1) Requirements Spec.ification - This phase involves
stating the purpose of the software: "what" is to
be done, not "how" it is to be done.

(2) Design - During this phase an algorithm is devised
to carry out the specification produced in the
previous phase. That is, "how" to implement the
system is specified during this phase.

(3) Coding - In this phase, the design is translated
into a programming language.

(4) Validation - During this phase, it is ensured that
the developed system functions as originally
intended. That is, it is verified that the system
actually does what it is supposed to do.

The first phase of the life-cycle has already been

performed. The research done by Demurjian and Hsiao

[Ref. 1) has described the motivation, goals, and structure

of the MLDS. The research conducted by Weishar [Ref. 3)

has extended this work to describe in detail the purpose of

22

In addition, we intend to make our interface transparent

to the user. For example, an employee in a corporate

environment with previous experience with DL/I could log

into our system, issue a DL/I request and receive resultant

data in a hierarchical format, i.e.,. a segment. The

employee requires no training in ABDL or MBDS procedures

prior to utilizing the system.

B.. AN APPROACH TO THE DESIGN

1. The Implementation Strategy

There are a number of different strategies we might

have employed in the implementation of the DL/I language

interface. For example, there are the build-it-twice full-

prototype approach, the level-by-level top-down approach,

the incremental development approach, and the advapcemanship

approach [Ref. 10: pp. 41-463. We have prdicated our

choice on minimizing the "software-:risis" as described by

Boehm [Ref. 10: pp. 14-313.

The strategy we have decided upon is the level-by-

level top-down approach. Our choice is based on, first, a

time coostraint. The interface has to be developed within a

specified time, specifically, by the time we graduate. And

second, this approach lends itself to the natural evolution

of the interface. The system is initially thought of as a

"black box" (see Figure 1) that accepts DL/I transactions

and then returns the appropriate results. The "black box"

21

II. SOFTWARE ENGINEERING OF A LANUAGE INTERFACE

In this chapter, we discuss the various software

engineering aspects of developing a language interface.

First, we describe our design goals. Second, we outline the

design approach that we have taken to implement the

interface. Included in this section are discussions of our

implementation strategy, our software development

techniques, and salient characteristics of the language

interface software. Then, we provide a critique of our

implementation. Fourth, we describe the data structures

used in the interface. And finally, we provide an

organizational description of the next four chapters.

A. DESIGN GOALS

We are motivated to implement a DL/I interface for a

MLDS using MBDS as the kernel database system, the

attribute-based data model as the kernel data model, and

ABDL as the kernel data language. It is important to note

that we do not propose changes to the kernel database system

or language. Instead, our implementation resides entirely

in the host computer. All user transactions in DL/I are

processed in the DL/I interface. MBDS continues to receive

and process requests in the syntax and semantics of ABDL.

20

I

...

" " " " ..". ' ". . .. " . .' " "." " " °""""" '" " " °

Appendix A covers the data structure diagrams for the

shared and local data. The detailed specifications of the

interface modules (i.e., LIL, KMS, KC, and KFS) are given in

Appendices B, C, D, and E, respectively. Appendix F is a

users' manual for the system. The specifications of the

source data language, DL/I, and the target data language,

ABDL, is found in (Ref. 17: pp. 282-307) and [Ref. 7),

respectively.

Throughout this thesis, we provide examples of DL/I

requests and their translated ABDL equivalents. All

examples involving database operations presented in this

thesis are based on the education database described in Date

[Ref. 17: pp. 279-284), and shown in Figure 3.

COURSE

CNum : CTitle : Descripn

+------------------ ------------------------

" 1 PNum PTitle Date : Location : Format

TEACHER STUDENT

; TNum : TName : : SNum : SName :Grade;

+--------------------- ----------------------------------

Figure 3. The Education Database.

19

ii)-- -: . .' i..Yi. ili " : ------------------------.+-----------------.------+ . : I

bus. Users access the system through either the hosts or

the controller directly (see Figure 2).

Performance gains are realized by increasing the number

of backends. If the size of the database and the size of

the responses to the transactions remain constant, then MBDS

produces a reciprocal decrease in the response times for the

user transactions when the number of backends is increased.

On the other hand, if the number of backends is increased

proportionally with the increase in databases and responses,

then MBDS produces invariant response times for the same

transactions. A more detailed discussion of MBDS is found

in [Ref. 8].

E. THESIS OVERVIEW

The organization of our thesis is as follows: In

Chapter II, we discuss the software engineering aspects of

our implementation. This includes a discussion of our

design approach, as well as a review of the global data

structures used for the implementation. In Chapter III, we

outline the functionality of the language interface layer.

In Chapter IV, we articulate the processes constituting the

kernel mapping system. In Chapter V, we provide an overview

of the kernel controller. In Chapter VI, we describe the

kernel formatting system. In Chapter VII, we conclude the

thesis.

'2 18

/ .----- -.--,F -- -.....-.-.... . . , .
• -. . . • ; . '.. :

II Backend Store 1

II
Backend

IIProcessor I

Backend Store 2

-To a Backend
Host Controller

Backend Store M!

Processor M

Communications
Bus

Figure 2. The Multi-Backend Database System.

fashion. These backends have identical hardware, replicated

software, and their own disk systems. In a multiple

backend-configuration, there is a backend controller, which

is responsible for supervising the execution of database

transactions and for interfacing with the hosts and users.

The backends perform the database operations with the

database stored on the disk system of the backends. The

controller and backends are connected by a communication

17.

U. 17U U

data-model transformations and data-language translations

for the language interfaces.

The attribute-based data model proposed by Hsiao

[Ref. 4), extended by Wong [Ref. 53, and studied by Rothnie

[Ref. 63, along with the attribute-based data language

(ABDL), defined by Banerjee [Ref. 7), have been shown to be

acceptable candidates for the kernel data model and kernel

data language, respectively.

Why is the determination of a kernel data model and

kernel data language so important for a MLDS? No matter how

multi-lingual the MLDS may be, if the underlying database

system (i.e., KDS) is slow and inefficient, then the

interfaces may be rendered useless and untimely. Hence, it

is important that the kernel data model and kernel language

be supported by a high-performance and great-capacity

database system. Currently, only the attribute-based data

model and the attribute-based data language are supported by

such a system. This system is the multi-backend database

system (MBDS) [Ref. 1).

D. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been

designed to overcome the performance problems and upgrade

issues related to the traditional approach of database

system design. This goal is realized through the

utilization of multiple backends connected in a parallel

16

modules are required for each other language interface of

the MLDS. For example, there are four sets of these modules

where one set is for the hierarchical/DL/I language

interface, one for the relational/SQL language interface,

one for the network/CODASYL language interface, and one for

the entity-relationship/Daplex language interface. However,

if the user writes the transaction in the native mode (i.e.,

in KDL), there is no need for an interface.

In our implementation of the hierarchical/DL/I language

interface, we develop the code for the four modules.

However, we do not integrate these modules with the KDS as

shown in Figure 1. The Laboratory of Database Systems

Research at the Naval Postgraduate School is in the process

.p of procuring new computer equipment for the KDS. When the

equipment is installed, the KDS is to be ported over to the

new equipment. The MLDS software is then to be integrated

with the KDS. Although not a very difficult undertaking, it

may be time-consuming.

C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data

language is the key decision in the development of a multi-

lingual database system. The overriding question, when

making such a choice, is whether the kernel data model and

kernel data language is capable of supporting the required

15

* S °°.

i0
LI KCKDS

- KFS

UDM User Data Model
UDL User Data Language
LIL Language Interface Layer
KMS Kernel Mapping System
KC Kernel Controller
KFS Kernel Formatting System
KDM Kernel Data Model
KDL Kernel Data Language
KDS Kernel Database System

Figure 1. The Multi-Lingual Database System.

sends the KDL transactions to the KC. When the KC receives

the KDL transactions, it forwards them to the KDS for

execution. Upon completion, the KDS sends the results in

KDM form back to the KC. The KC routes the results to the

kernel formatting sstem (KFS). The KFS reformats the

results from KDM form to UDM form. The KFS then displays

the results in the correct UDM form via the LIL.

The four modules, LIL, KMS, KC, and KFS, are

collectively known as the language interface. Four similar

14

* -------------------------...

B. THE MULTI-LINGUAL DATABASE SYSTEM

A detailed disc ssion of each of the components of the

MLDS is provided in subsequent chapters. In this section we

provide an overview of the organization of the MLDS. This

assists the reader in understanding how the different

components of the MLDS are related.

Figure 1 shows the system structure of a multi-lingual

database system. The user interacts with the system through

the langgage interface layE (LIL), using a chosen user data

model (UDM) to issue transactions written in a corresponding

model-based user data !anguage (UDL)- The LIL routes the

user transactions to the kernel ma g tem (S). The

KMS performs one of two possible tasks. First, the KMS

transforms a UDM-based database definition to a database

definition of the kernel data model (KDM), when the user

specifies that a new database is to be created. When the

user specifies that a UDL transaction is to be executed, the

KMS translates the UDL transaction to a transaction in the

kernel data language (KDL). In the first task, the KMS

forwards the KDM data definition to the kernel controller

(KC). The KC, in turn, sends the KDM database definition to

the kernel database system (KDS). When the KDS is finished

with processing the KDM database definition, it informs the

KC. The KC then notifies the user, via the LIL, that the

database definition has been processed and that loading of

the database records may begin. In the second task, the KMS

13

,. - . .-.• ,.. . ., , , . . , -. -. -. . -. - . , , • - . . - ,

I7.- _-- . '-- . . .

same results even if the data language of the transaction

originates at a different database system.

A second advantage deals with the economy and

effectiveness of hardware upgrade. Frequently, the hardware

supporting the databasE system is upgraded because of

technological advancements or system demand. With the

traditional approach, this type of hardware upgrade has to

be provided for all of the different database systems in

use, so that all of the users may experience system

performance improvements. This is not the case in the MLDS,

where only the upgrade of a single system is necessary. In

the MLDS, the benefits of a hardware upgrade are uniformly

distributed across all users, despite their use of different

models and data languages.

Thirdly, a multi-lingual database system allows users to

explore the desirable features of the different data models

and then use these to better support their applications.

This is possible because the MLDS supports a variety of

databases structured in any of the well-known data models.

It is apparent that there exists ample motivation to

develop a multi-lingual database system with many data

model/data language interfaces. In this thesis, we are

developing a hierarchical/DL/I language interface for the

MLDS. We are extending the work of Banerjee [Ref. 2) and

Weishar [Ref. 3], who have shown the feasibility of this

particular interface in a MLDS.

12

language interface. This thesis outlines the actual

implementation of a DL/I interface. The appendices provide

the SSL design for this implementation.

* A final characteristic that a DL/I interface should

have is extensibility. A software product has to be

designed in a manner that permits the easy modification and

addition of code. In this light, we have placed "stubs" in

appropriate locations within the KFS to permit easy

insertion of the code needed to handle multiple horizontal

screens of output. In addition, we have designed our data

structures in such a manner that subsequent programmers-may

easily extend them, to handle not only multiple users, but

also other language interfaces.

C. A CRITIQUE OF THE DESIGN

Our implementation of the DL/I interface possesses all

of the elements of a successful software product. As noted

previously, it is simple, understandable, maintainable, and

extensible. Our constant employment of modern software

engineering techniques have ensured its success.

However, there are two techniques that are especially

worthy of critique. The first of these is the use of the

SSL. Initially, we have felt that the implementation

language may also serve as the language to specify program

algorithms. However, in doing so, we have stifled our

creativity. This is because we are concentrating not only

26

._ ._ . .* . .

on what the algorithm does, but also on what the constructs

(data structures) of the algorithm are. The use of the SSL

has permitted us to concentrate on the functionality of the

algorithm without a heavy concentration on its particular

constructs. This has allowed us to view the algorithm in a

detached manner so that the most efficient implementation

for the constructs may be used. Although we have initially

felt that the development Of the program with the SSL may be

tob time-consuming, our opinions have changed when we have

realized the advantages of the SSL and the overall

complexity of the DL/I language interface.

The way in which the data structures are designed is the

other noteworthy software engineering technique. Being

relatively inexperienced programmers, we are inclined to use

static structures. Hence, we have made extensive use of

structures which are bound at compile time. We soon realize

that in doing so, the computing resources of the system

(i.e., the data space) are being depleted quite rapidly.

Therefore, it is necessary for us to design the data

structures in such a way that they may be managed in a

dynamic fashion. Most of the data structures of the DL/I

interface are linked-lists. This design affords us the most

convenient way to efficiently utilize the resources of the

system. It is an easy task to use the C language's malloc()

(memory allocate) function to dynamically create the

elements of a list as we need them. In addition, the free()

27

command is useful in releasing these same elements to be

used again.

D. THE DATA STRUCTURES

The DL/I language interface has been developed as a

single-user system that at some point is to be updated to a

multi-user system. Two different concepts of the data are

used in the language interface: (1) data shared by all

users, and (2). data specific to each user. The reader

should realize that the data structures used in our

interface, and described below, have been deliberately made

generic. Hence, these same structures support not only our

DL/I interface, but the other language interfaces as well,

i.e., SQL, CODASYL-DML, and Daplex.

1. Data Shared by All Users

The data structures that are shared by all users,

are the database schemas defined by the users thus far. In

our case, these are hierarchical schemas, consisting of

segments and attributes. These are not only shared by all

users, but also shared by the four modules of the MLDS,

i.e., LIL, KMS, KC, and KFS. Figure 4 depicts the first

data structure used to maintain data. It is important to

note that this structure is represented as a union. Hence,

it is generic in the sense that a user may utilize this

structure to support SQL, DL/I, CODASYL-DML, or Daplex

needs. However, we concentrate only on the hierarchical

28

.. * '. * . .** * * *

union dbidnode

struct rel dbidnode *rel;
struct hie dbid-node *hie;
struct netdbidnode *net;
struct ent dbid-node *ent;

Figure 4. The dbidnode Data Structure.

model. In this regard, the second field of this structure

points to a record that contains information about a

hiararchical database. Figure 5 illustrates this record.

The first field is simply a character array containing the

name of the hierarchical database. The next field contains

an integer value representing the number of segments in the

database. The third and fourth fields are pointers to

hrecnode records, containing information about each segment

in the database. Specifically, the third field points to

the root segment in the database, while the fourth field

points to the current segment being accessed. The final

field is simply a pointer to the next database.

struct hiedbidnode

char name[DBNLength + 1];
int numseg;
struct hrecnode *rootseg;
struct hrecnode *curr_seg;
struct hiedbidnode *next_db;

}

Figure 5. The hie dbidnode Data Structure.

29

.............................. °.....
"_- °... .~j ° ,. ,o0o .'o"- o - . . . 5-.. o ,....0 o °.'o~.o ,,

The hrec node record is shown in Figure 6, and

contains information about each segment in the database.

The first field of the record holds the name of the segment.

The next field contains the number of attributes in the

segment. The third and fourth fields point to hattrnode

records which contain data on the first and current

attributes of the segment. The next three fields point to

other records of the same type. They give the schema its

hierarchical form, pointing to a given segment's parent,

first child, and next sibling. And finally, the last two

fields contain the number of children and siblings that

exist for the given segment in the hierarchical database

schema.

Figure 7 shows the hattrnode record; the final

record type used to support the definition of the

hierarchical database schema. The first field is an array

struct hrecnode
r

char nameERNLength + 1];
int num-attr;
struct hattrnode *first_attr;
struct hattrnode *curr_attr;
struct hrecnode *parent;
struct hrecnode *first_child;
struct hrec node *next-sib;
int numchild;
int num sib;

Figure 6. The hrecnode Data Structure.

30

......................

struct hattrnode

char name[ANLength + 13;

char type;
int length;

int keyflag;
int multiple;
struct hattrnode *next_attr;

Figure 7. The hattr-node Data Structure.

which holds the name of the attribute. The second field

serves as a flag to indicate the attribute type. For

instance, an attribute may either be an integer, a floating

point number, or a string. The characters "i ", "f", and "S"

are used, respectively. The third field indicates the

maximum length that a value of this attribute type may

possibly have. For example, if this field is set to ten and

the type of this attribute is a string, then the maximum

number of characters that a value of this attribute type may

have is ten. The fourth field is a flag used to indicate

whether this particular attribute is the sequence field of

the segment. The fifth field is a flag used to indicate

whether twin segment occurrences of this type may contain

the same sequence field values. The last field simply

points to the next attribute in this segment. The reader

may refer to Appendices B through E to examine the use of

these data structures in the SSL.

31

2. Data SecRific to Each User

This category of data represents information

required to support each user's particular interface needs.

The data structures used to accomplish this may be thought

of as forming a hierarchy. At the root of this hierarchy is

the userinfo record, shown in Figure 8, which maintains

information on all current users of a particular language

interface. The userinfo record holds the ID of the user, a

uni on that describes a particular interface, and a pointer

to the next user. The union field is of particular interest

to us. As noted earlier, a union serves as a generic data

structure. In this case, the union may hold the data for a

user accessing either an SQL language interface layer, a

DL/I LIL, a CODASVL-DML-LIL, or a Daplex LIL. The li info

union is shown in Figure 9.

We are only interested in. the data structures

containing user information that pertain to the DL/I, or

hierarchical, language interface. This structure is

referred to as dliinfo and is depicted in Figure 10. The

struct user info

char uid[UIDLength + 1];
union liinfo litype;
struct user info *next user;

Figure 6. The user-info Data Structure.

32

union liinfo

struct sqlinfo li_sql;
struct dliinfo li_dli;
struct dm1_info li _dml;
struct dap_info li_dap;

Figure 9. The liinfo Data Structure.

first field of this structure, currdb, is itself a record

and contains currency information on the database being

accessed by a user. The second field, file, is also a

record. The file record contains the file descriptor and

file identifier of a file of DL/I transactions, i.e., either

requests or database descriptions. The next field,

dli _tran, is also a record, and holds information that

struct dli info
'C

struct currdb info currdb;
struct fileinfo file;
struct tran info dli tran;
int operation;
struct ddl _info *ddl _files;
union kmsinfo kms data;
union kfs_info kfs data;
int error;
int answer;
struct hrecnode saved-segptr;
struct hrecnode saved segptr2;
struct Sitinfo *kms sit;
struct Sitinfo *sit list;
struct Sitstatusinfo *fst sit pos;
struct Sitstatusinfo *currsit_pos;
int buffcount;

Figure 10. The dli info Data Structure.

33
. . .

t.I* X :.-: - - . s

. . *

describes the DL/I transactions to be processed. This

includes the number of requests to be processed, the first

request to be processed, and the current request being

processed. The fourth field of the dliinfo record,

operation, is a flag that indicates the operation to be

performed. This may be either the loading of a new database

or the execution of a request against an existing database.

The next field, ddl_files, is a pointer to a record

describing the descriptor and template files. These files

contain information about the ABDL schema corresponding to

the current hierarchical database being processed, i.e., the

ABDL schema information for a newly defined hierarchical

database. The following fields, kmsdata and kfs_data, are

unions that contain information required by the KMS and KFS.

These are described in more detail in the next four

chapters. The next field, error, is an integer value

representing a specific error type. The next field, answer,

is used by the LIL to record answers received through its

interaction with the user of the interface. The next two

fields, savedseg_ptr and saved seg_ptr2, are used by the

KMS to save a pointer to the segment in the hierarchical

schema that is last referenced during a previous call to the

KMS. The first field is used by the KMS parser/translator,

and the second field is utilized during the semantic

analysis in the KMS. The next two fields, kms sit and

sitlist, are pointers to records that implement the status

34

" - _" ."- ' '- ". "- "- j - -' -''. ', h' -' - ",P , "' "" "" 'P'- -' -. p. ., _. ."-. .._"-" ' ' ', ,. . -. , '.. '. -

information table (SIT), as discussed by Weishar

[Ref. 3: pp. 32-363. They allow the current position of the

database to be maintained. They contain the ABDL

equivalents of the DL/I requests, as well as result files to

hold data retrieved from MBDS by these ABDL requests. The

next two fields, fst_sitpos and curr-sitpos, contain

information required by the KC to guide it in the execution

of the translated DL/I requests. The last field,

bufl_count, is a counter variable used in the KC to keep

track of the result buffers.

E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide the

user with a more detailed analysis of the modules

constituting the MLDS. Each chapter begins with an overview

of what each particular module does and how it relates to

the other modules. The actual processes performed by each

module are then discussed. This includes a description of

the actual data structures used by the modules. Each

chapter concludes with a discussion of module shortcomings.

35

III. THE LANGUAGE INTERFACE LAYER (LIL)

The LIL is the first module in the DL/I mapping process,

and is used to control the order in which the other modules

are called. The LIL allows the user to input transactions

from either a file or the terminal. A transaction may take

the form of either a database description (DBD) of a new

database, or a DL/I request against an existing database. A

transaction may contain multiple requests. This allows a

group of requests that perform a single task, such as a

looping construct in DL/I, to be executed together as a

single transaction. The mapping process takes place when

the LIL sends a single transaction to the KMS. After the

transaction has been received by the KMS, the KC is called

to. process the transaction. Control always returns to the

LIL, where the user may close the session by exiting to the

operating system.

The LIL is menu-driven. When the transactions are read

from either a file or the terminal, they are stored in a

data structure called hiereqinfo. If the transactions are

DBDs, they are sent to the KMS in sequential order. If the

transactions are DL/I requests, the user is prompted by

another menu to seleLt-vely choose an individual request to

be processed. The menus provide an easy and efficient way

36

for the user to view and select the methods of request

processing desired. Each menu is tied to its predecessor,

so that by exiting one menu the user is moved up the "menu

tree". This allows the user to perform multiple tasks in

one session.

A. THE LIL DATA STRUCTURES

The LIL uses two data structures to store the user's

transactions and control which transaction is to be sent to

the KMS. It is important to note that these data structures

are shared by both the LIL and the KMS.

The first data structure is named traninfo and is shown

in Figure 11. The first field of this record, firstreq,

contains the address of the first transaction that has been

read from a file or the terminal. The second field,

currreq, contains the address of the transaction currently

being processed. The LIL sets this pointer to the

transaction that the KMS is to process next, and then calls

the KMS. The third field, no req, contains the number of

struct traninfo
{

struct hie_req info *firstreq;
struct hie_reqinfo *currreq;
int no_req;

Figure 11. The traninfo Data Structure.

37

transactions currently in the transaction list. This number

is used for loop control when printing the transaction list

to the screen, or when searching the list for a transaction

to be executed.

The second data structure used by the LIL is named

hie-reqinfo. Each copy of this record represents a user

transaction, and thus, is an element of the transaction

list. The hie_reqinfo record is shown in Figure 12. The

first field of this record, req, is a character string that

contains the actual DL/I transaction. The second field,

in-req, is a pointer to a list of character arrays that each

contain a single line of one transaction. After all lines

of a transaction have been read, the line list is

concatenated to form the actual transaction, req. The third

field of this record, reqlen, contains the length of the

transaction. It is used to allocate the correct and minimal

amount of memory space for the transaction. If a

transaction contains multiple requests, the fourth field,

struct hie reqinfo

char *req;
strucc tempstr info *in_req;
int reqlen;
struct hie_req info *subreq;
struct hie_req info *nextreq;

Figure 12. The hiereqinfo Data Structure.

38

sub req, points to the list of requests that make up the

transaction. In this case, the field in req is the first

request of the transaction. The last field, next req, is a

painter to the next transaction in the list of transactions.

B. FUNCTIONS AND PROCEDURES

The LIL makes use of a number of functions and

procedures in order to create the transaction list, pass

elements of the list to the KMS, and maintain the database

schemas. We do not describe each of these functions and

procedures in detail. Rather, we provide a general

description of the LIL processes.

1. Initialization

The MLDS is designed to be able to accommodate

multiple users, but is implemented to support only a single

user. To facilitate the transition from a single-user

system to a multiple-user system, each user possesses his

own copy of a user data structure when entering the system.

This user data structure stores all of the relevant data

that the user may need during their session. All four

modules of the language interface make use of this

structure. The modules use many temporary storage

variables, both to perform their individual tasks, and to

maintain common data between modules. The transactions, in

user data language form, and mapped kernel data language

form, are also stored in each user data strulcture. It is

39

shown in Figure 5) with the name of the new dataoase, as

input by the user. The LIL then sends the KMS a complete

database definition, which takes the form of a DL/I database

description (DBD) as follows:

DBD NAME= databasename
SEGM NAME= segment_1
FIELD NAME= (attrl,SEQE,M]), ETYPE=type,) BYTES= length
FIELD NAME= attr_2, ETYPE=type,) BYTES= length

FIELD NAME= attr_i, ETYPE=type,) BYTES= length
SEGM NAME= segment_2
FIELD NAME= (attr_l,SEQE,M]), ETYPE=type,) BYTES= length
FIELD NAME= attr_2, ETYPE=type,J BYTES= length

FIELD NAME= attr_j, ETYPE=type,) BYTES= length
SEGM NAME= segment_3

SEGM NAME= segment_n

The sequence of statements in the DBD is

significant. Specifically, SEGM statements have to appear

in the sequence that reflects the hierarchical structure,

i.e., top to bottom, left to right. Also, each SEGM

statement has to be immediately followed by the appropriate

FIELD statements. The FIELD statement for the sequence

field (indicated in the DBD example by SEQ) has to be the

first such statement for the segment. The sequence field is

taken to be unique, unless M (multiple) is specified. If M

is specified, two occurrences of the given segment type may

have the same value for the sequence field. If the optional

TYPE specification is omitted, the data type CHAR is the

53

field, resultfile, is used in the KC to accumulate results

obtained from MBDS when executing the ABDL requests.

At the end of the mapping process, before control is

surrendered to the LIL, all data structures that are unique

to the KMS which have been allocated during the mapping

process are returned to the free list.

B. FACILITIES PROVIDED BY THE IMPLEMENTATION

In this section, we discuss those DL/I facilities that

are provided by our implementation of the hierarchical

interface. We do not discuss the DL/I-to-ABDL translation

in detail. Rather, we provide an overview of the salient

features of the KMS, accompanied by one illustrative example

of the parsing and translation processes. User-issued

requests may take two forms, DL/I database definitions, or

DL/I database manipulations. In the case of database

manipulations, we also describe the semantic analysis

necessary to complete the mapping process. Appendix C

contains the design of our implementation, written in a

system specification language (SSL).

1. Database Definitions

When the user informs the LIL that the user wishes

to create a new database, the job of the KMS is to build a

hierarchical database schema that corresponds to the

database definition input by the user. The LIL initially

allocates a new database identification node (hiedbid node

52

pointers are required because some multiple ABDL requests

are generated into a linear list by the KMS, through a

depth-first search of the hierarchical schema, i.e., a tree

walk that effectively flattens the tree. However, such

multiple requests have to be processed by the KC in a

hierarchical, rather than linear, fashion. Thus, the

parent, child and sibling pointers preserve the hierarchical

form of the linear list, i.e., the flattened tree. The

following two fields, loop and nf_loop, are pointers that

indicate a looping construct in the DL/I input request,

i.e., a "label name" declaration, accompanied by a

GOTO "label name" statement. The next field, abdlreq, is a

pointer to the actual ABDL request generated by the KMS.

The following two fields, operation and cmdcode, are flags

indicating the DL/I operation desired (e.g., GU, GN, GNP,

... , etc.), and which command code, if any, is resident in

the DL/I source request. The next field, or, indicates

whether there is an "or" in the resulting ABDL request.

This is used by the KC during the completion of ABDL

requests that may not be fully-formed by the KMS. The KC

uses the next field, template, as working space for these

purposes. The following field, segname, contains the

segment name of the translated request. The next two

fields, BOR and EOR, mark the beginning and end of multiple

ABDL requests for control purposes in the KC. The last

51

the database is limited only by the constraint placed on

them by the user in the original database definition, and as

such, they may be of varying lengths.

The remaining KMS data structure, shown in Figure

15, is our implementation of the status information table

(SIT) discussed by Weishar [Ref. 3: pp. 32-36]. The KMS, in

general, maps a single DL/I request to multiple ABDL

requests. We require one Sitinfo record corresponding to

each of these ABDL requests. The first two fields, prev and

next, are pointers to other records of the same type that

connect the records in a linearly-linked list. The next

three fields, parent, child and sibling, are pointers that

interconnect the records in a hierarchical manner. These

struct Sit info

struct Sitinfo *prev;
struct Sitinfo *next;
struct Sitinfo *parent;
struct Sitinfo *child;
struct Sit-info *sibling;
struct Sitinfo *loop;
struct Sit info *nf loop;
char *abdl req;
int operation;
int cmd code;
int or;
char *template;
char seg_name[RNLength + 1);
int BOR;
int EOR;
struct hie_fileinfo *result_file;

Figure 15. The Sitinfo Data Structure.

50

struct symbolicidinfo
{

char name[ANLength + 1];
int length;
struct symbolicidinfo *next_attr;

}

struct insertlists

char *list;
int insertattrs;
int insert _vals;
char seg_name[RNLength + 1);
struct hrecnode *segptr;
struct insertlists *next-list;

}

struct insertinfo
{

char attr[ANLength + 13;
char *value;
char type;
struct insert info *next-val;

}

Figure 14. Additional KMS Data Structures.

insertlists node contains the number of insertattrs

(attributes to be inserted) and the number of insertvals

(values to be inserted) for a given insert list, as well as

the segment name and a pointer to that segment in the

hierarchical schema. Each insertinfo item contains the

attribute name, attribute value, and type information

corresponding to the item that is to be inserted into the

database. It should be noted that the value field in the

insert-info record is a pointer to a variable-length

character string. Although attribute names have a constant

maximum-length constraint, the length of attribute values in

49

*.- % - ° % . °. .- . . ." . .. " . * % I . .°° - '
"°

*' * -" " . ' .. b . * '
o

•• o
•

•
•

- °o° "

struct hie kmsinfo
{
struct symbolicidinfo *tgt_list;
struct insertlists *insertlist;
char *tempstr;

}

Figure 13. The hie_kms_info Data Structure.

item, which points to a single insert list. However, in the

case of multiple path insertion (i.e., ISRT, specifying

command code D), this list contains an item that points to

each insert list, corresponding to each segment to be

inserted. Each insert list, then, holds the values that an

ISRT request desires inserted into the database for a given

segment. The third field, tempstr, is a pointer to a

variable-length character string. The character-string

length is a function of the input request length, and is

allocated, when required, to accumulate intermediate

translation results while parsing the boolean predicates

that optionally follow the segment name in the segment

search argument (SSA) of a given user request.

The next three data structures, shown in Figure 14,

are records that are pointed to by the hiekmsinfo record,

as just described. Respectively, they represent a list of

attribute names (the target list), a list of insert list

nodes, and a list of attribute values (the insert list(s)).

ANLength and RNLength are constants defining the maximum

lengths of attribute and segment names, respectively. Each

48

higher-level rule has been satisfied, at which time further

translation is accomplished. When all of the necessary

lower-level grammar rules have been satisfied and control

has ascended to the highest-level rule, the parsing and

translation processes are complete. In Section B, we give

an illustrative example of these processes. We also

describe the subsequent semantic analysis necessary to

complete the mapping process.

2. The KMS Data Structures

The KMS utilizes, for the most part, just five

structures defined in the interface. It, naturally,

requires access to the DL/I input request structure

discussed in Chapter II, the dlitran structure. However,

the five data structures to be discussed here are only those

unique to the KMS.

The first of these, shown in Figure 13, is a record

that contains information accumulated by the KMS during the

grammar-driven parse that is not of immediate use. This

record allows the information to be saved until a point in

the parsing process where it may be utilized in the

appropriate portion of the translation process. The first

field in this record, tgtlist, is a pointer to the head of

a list of attribute names. These are the names of those

attributes whose values are retrieved from the database.

The second field, insertlist, is a pointer to the head of a

list of insert lists. This list generally contains a single

47

input streams. Given a specification of the input language

structure (a set of grammar rules), the user's code to be

invoked when such structures are recognized, and a low-level

input routine, YACC generates a program that syntactically

recognizes the input language and allows invocation of the

user's code throughout this recognition process. The class

of specifications accepted is a very general one: LALR(1)

grammars. It is important to note that the user's code

mentioned above is our mapping code that is going to perform

the DL/I-to-ABDL translation. As the low-level input

routine, we utilize a Lexical Analyzer Generator (LEX)

[Ref. 16]. LEX is a program generator designed for lexical

processing of character input streams. Given a regular-

expression description of the input strings, LEX generates a

program that partitions the input stream into tokens and

communicates these tokens to the parser.

The parser produced by YACC consists of a finite-

state automaton with a stack and performs a top-down parse,

with left-to-right scan and one token look-ahead. Control

of the parser begins initially with the highest-level

grammar rule. Control descends through the grammar

hierarchy, calling lower and lower-level grammar rules which

search for appropriate tokens in the input. As the

appropriate tokens are recognized, some portions of the

mapping code may be invoked directly. In other cases, these

tokens are propagated back up the grammar hierarchy until a

46

. .°

tY

IV. THE KERNEL MAPPING SYSTEM (KMS)

The KMS is the second module in the DL/I mapping

interface and is called from the language interface layer

(LIL) when the LIL has received DL/I requests input by the

user. The function of the KMS is to: (1) parse the request

to validate the user's DL/I syntax, (2) translate, or map,

the request to equivalent ABDL request(s), and (3) perform

a semantic analysis of the current ABDL request(s)

generated, relative to the request(s) generated during a

previous call to the KMS. Once an appropriate ABDL request,

or set of requests, has been formed, it is made available to

the kernel controller (KC) which then prepares the request

for execution by MBDS. The KC is discussed in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS

From the description of the KMS functions above we

immediately see the requirement for a parser as a part of

the KMS. This parser validates the DL/I syntax of the input

request. The parser grammar is the driving force behind the

entire mapping system.

1. The KMS Parser / Translator

The KMS parser has been constructed by utilizing

Yet-Another-Compiler Compiler (YACC) [Ref. 15). YACC is a

program generator designed for syntactic processing of token

45

...

...

has been sent to the KMS, the KC is immediately called. The

mapped DL/I requests are placed on a mapped transaction

list, which the KC may easily access.

5. WraaRing-uR

Before exiting the system, the user data structure

described in Chapter II has to be deallocated. The memory

occupied by the user data structure is freed and returned to

the operating system. Since all of the user structures

reside in a list, the exiting user's node has to be removed

from the list.

44

• •. .9 "- % " "1 -" ' " '°
"

*' * ." . ." . .'. . . ." " " * " , " " "" " , " "

.6 7

Pick the number or letter of the action desired
(num) - execute one of the preceding transactions
(d) - redisplay the list of transactions
(r) - reset the currency pointer to the root
(x) - return to the previous menu

ACTION ---- >

Since DL/I requests are independent items, the order in

which they are processed does not matter. The user has the

option of executing any number of DL/I requests. A loop

causes the menu to be redisplayed after any DL/I request has

been executed so that further choices may be made. The "r"

selection causes the currency pointer to be repositioned to

the root of the hierarchical schema so that subsequent

requests may access the complete database, rather than be

limited to beginning from a current position established by

previous requests.

4. Calling the KC

As mentioned earlier, the LIL acts as the control

module for the entire system. When the KMS has completed

its mapping process, the transformed transactions have to be

sent to the KC to interface with the kernel database system.

For DBDs, the KC is called after all DBDs on the transaction

list have been sent to the KMS. The mapped DBDs have been

placed in a mapped transaction list that the aC is going to

access. Since DL/I requests are independent items, the

user should wait for the results from one DL/I request

before issuing another. Therefore, after each DL/I request

43

. .

accesses a single transaction from the transaction list. It

does this by reading the transaction pointed to by the

request pointer, currreq, of the traninfo data structure

(see Figure 11). Therefore, it is the job of the LIL to set

this pointer to the appropriate transaction before calling

the KMS.

a. Sending DBDs to the KMS

When the user specifies the filename of DBDs

(input from a file only) further user intervention is not

required. To produce a new database, the transaction list

of DBDs is sent to the KMS via a program loop. This loop

traverses the transaction list, calling the KMS for each DBD

in the list.

b. Sending DL/I Requests to the KMS

In this case, after the user has specified the

mode of input, the user conducts an interactive session with

the system. First, all DL/I requests are listed to the

screen. As the requests are listed from the transaction

list, a number is assigned to each transaction in ascending

order, starting with the number one. The number appears on

the screen to the left of the first line of each

transaction. Note that each transaction may contain

multiple requests. Next, an access menu is displayed which

looks like the following:

42

selected from the previous menu had been "p", then the user

may also input transactions interactively from the terminal.

The generic menu looks like the following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION ---- > _

Note that the "t" choice would be omitted if the operation

selected from the previous menu had been to load a new

database. Again, each mode of input selected corresponds to

a different procedure to be performed. The transaction list

is created by reading from the file or terminal, looking for

an end-of-transaction marker or an end-of-file marker.

These flags tell the system when one transaction has ended,

and when the next transaction begins. When the list is

being created, the pointers to access the list are

initialized. These pointers, firstreq and curr req, have

been described earlier in the data structure subsection.

Both pointers are set to the first transaction read, in

other words, the head of the transaction list.

Accessing the Transaction List

Since the transaction list stores both DBDs and DL/I

requests, two different access methods have to be employed

to send the two types of transactions to the KMS. We

discuss the two methods separately. In both cases, the KMS

41

. -7

easy to see that the user structure provides consolidated,

centralized control for each user o4 the system. When a

user logs onto the system, a user data structure is

allocated and initialized. The user ID becomes the

distinguishing feature to locate and identify different

users. The user data structures for all users are stored in

a linked-list. When new users enter the system, their user

data structures are appended to the end of the list. In our

current environment there is only a single element on the

user list. In a future environment, when there are multiple

users, we simply expand the user list as described above.

2. Creating the Transaction List

There are two operations the user may perform. A

user may define a new database or process DL/I requests

against an existing database. The first menu that is

displayed prompts the user to select the operation desired.

Each operation represents a separate procedure to handle

specific circumstances. The menu looks like the following:

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION ---- >

For either choice (i.e., 1 or p), another menu is

displayed to the user requesting the mode of input. This

input may always come from a data file. If the operation

40

default. For each SEGM statement, an additional segment

node (hrecnode shown in Figure 6) is added to the database

schema under construction. For each subsequent FIELD

statement, an additional attribute node (hattrnode shown in

Figure 7) is added to the schema for the current segment

under construction. The database identification node

(hie dbid node shown in Figure 5) holds the number of

segments in the schema and the database name, each segment

node holds the number of attributes in that segment and the

segment name, and each attribute node holds the attribute

name, type, length, and sequence field information.

When the KMS has parsed all the statements included

in the DBD, the result is a completed database schema, as

shown in Figure 16. Not shown in Figure 16, is the list of

attribute nodes that is connected to each segment node. The

hierarchical database schema, when completed, serves two

purposes. First, when creating a new database, it

facilitates the construction of the MBDS template and

descriptor files. Secondly, when processing requests

against an existing database, it allows a validity -C: of

the segment and attribute names. It also serves as source

of information for type-checking.

2. Database Manipulations

When the user wishes the LIL to process requests

against an existing database, the first task of the VMS is

to map the user's DL/I request to equivalent ABDL requests.

54

- t..............

D7

DBID

SEG_I

S_ SGi

: SEGS2 1 : SEG-i I

* S:SEGj ISE n:

Figure 16. The Hierarchical Database Schema.

a. The DL/I GET Calls to the ABDL RETRIEVE

The DL/I GET calls consist of the Get Unique

(GU), Get Next (GN), and Get Next within Parent (GNP)

operations. The fact that each of these calls is quite

different in functionality is of little concern to the KMS

parser/translator. All of these calls have identical form,

syntactically, with the exception of the DL/I operator,

i.e., GU, GN, GNP. Therefore, the KMS maps each DL/I GET

call to an equivalent ABDL RETRIEVE request, or, as in most

cases, a series of ABDL RETRIEVE requests. An operator

• 55

, :, '. ,'_'. _. ..,• : . . ' ..' ' j ° ' ° ' ' ' , ,t
°

" . ..

identification flag is set during the translation process

which allows the KC to associate the appropriate operation

to these requests for controlling their execution.

The DL/I GU operation is a direct retrieval, and

as such, has to specify the complete hierarchical path to

the desired segment. That is, it specifies the segment type

at each level of the database, from the root down to the

desired segment, together with an optional occurrence-
rw

identifying condition for each segment type. (Collectively,

such a specification, at each level, is referred to as a

segment search argument for that level/segment.) An example

of such a call is as follows:

GU course (ctitle= "mlds')
offering
student

This call retrieves information concerning the first

occurrence of a student enrolled in the course entitled

"mlds". The series of ABDL requests generated for such a

call is as follows:

[RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))

(CNUM) BY CNUM I

I RETRIEVE ((TEMPLATE = OPFERING) and
(CNUM -

(DATF) BY DATE I

56

E RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and

(DATE =
(SUM, SNAME, GRADE) BY SNUM I

Notice that only the first RETRIEVE request generated is

fully-formed, i.e., may be submitted to MBDS "as-is".

Subsequent requests may not be completed until the

appropriate sequence-field values have been obtained from

thp execution of previous requests. This process takes

place in the KC. The KMS uses asterisks, as place holders,

to mark the maximum allowable length of such sequence

fields. Each RETRIEVE request, with the exception of the

last, is generated solely to extract the hierarchical path

to the desired segment. (By so doing, they allow the KC to

establish and maintain the current position within each

segment referenced in a DL/I call.) Consequently, the only

attribute in each target list is that of the segment

sequence field. Of course, the target list of the last

request contains all the attributes of the desired segment.

It is the information obtained from the execution of the

final request which is returned to the user, via the KFS.

Also of note is that each request includes the optional ABDL

"BY attributename" clause. The work of Weishar

[Ref. 3: pp. 39-42) has proposed that the results obtained

from each RETRIEVE request would be sorted by sequence-field

value in the language interface. We chose to let the KDS

57

.-

(i.e., MBDS) perform this operation through the inclusion of

a "BY sequencefield" clause on all ABDL RETRIEVE requests.

The DL/I GN and GNP operations are sequential

retrievals. As such, they may each contain a looping

construct. Such a construct takes the form of a label that

precedes the GN or GNP operator, and a GOTO statement

following the last segment search argument of the DL/I call.

GN and GNP operations are predicated on the fact that a

previous DL/I call has established a current position within

the database. Therefore, unlike the GU operation, they need

not specify the complete hierarchical path from the root to

the desired segment. This does, however, make it necessary

to semantically analyze the GN or GNP, and the previous DL/I

call. This analysis is discussed in Subsection 3. An

example of such a call is as follows:

xx GNP student
GOTO xx

This call retrieves information concerning the next

occurrence of a student enrolled in the course, and the

offering of that course, which have been established as the

current COURSE and OFFERING segments within the database by

the previous GET operation (of any type) or ISRT operation.

The ABDL request generated for such a call is as follows:

58

I RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE = ******))

(SNUM, SNAME, GRADE) BY SNUM I

There is no indication, from the ABDL request generated,

that the DL/I call contained a looping construct. However,

a loop pointer is set during the translation process which

allows the KC to discern that a looping construct exists and

the extent of such a construct. The KMS translator

recognizes that the first segment search argument of this

DL/I call does not specify the root segment as its segment

type. Consequently, it performs a tree walk of the

hierarchical schema, in reverse order, to obtain the

sequence fields required to complete the translation

process, i.e., those that specify the complete path from the

root to the segment concerned; in this case, CNUM and DATE.

The GN and GNP operators may also be used to

perform sequential retrieval without the specification of

SSAs. In the case of the GN operator, such a call retrieves

all of the segments (of all types) subordinate to the last

segment type referenced in the previous DL/I call, which

established the current position within the database. The

GNP operator functions similarly, except that instead of

retrieving all subordinate segments, it only retrieves

subordinate child segments, i.e., it does not retrieve

segments below the immediate children of the current parent

59

-o.

segment. Since no SSA is specified, the KMS translator has

& to save the identity of the last segment type referenced in

each DL/I call. Since the KMS does not know when it might

receive such a DL/I call, this allows the translator to

identify where the sequential retrieval begins for such a

DL/I call, i.e., which segment types constitute

"subordinate" segments. An example of such a call is as

follows:

yy GN
GOTO yy

I

Assuming that the previous DL/I call is simply "GU course",

the series of ABDL requests generated are as follows:

[RETRIEVE ((TEMPLATE = PREREQ) and
(CNUM =

(PNUM, PTITLE) BY PNUM I

C RETRIEVE ((TEMPLATE = OFFERING) and
I (CNUM = ****))

(DATE, LOCATION, FORMAT) BY DATE I

C RETRIEVE ((TEMPLATE = TEACHER) and
(CNUM = ****) and
(DATE =

(TNUM, TNAME) BY TNUM 3

E RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE =

(SNUM, SNAME, GRADE) BY SNUM]

If subordinate segments for PREREQ, TEACHER or STUDENT were

in the database, appropriate RETRIEVE requests would have

60

been generated for those segment types also, i.e., PREREQ,

TEACHER and STUDENT are the leaves of our example database.

However, if our example DL/I call contained GNP, instead of

GN, only the RETRIEVEs for PREREQ and OFFERING would be

generated, i.e., only the children of COURSE in our example

database. Also, notice that each request includes all

attributes for that segment type in its target list. That

is, complete information about each of these segments is to

be returned to the user.

b. The DL/I GET HOLD Calls to the ABDL RETRIEVE

The DL/I GET HOLD calls consist of the Get Hold

Unique (GHU), Get Hold Next (GHN), and Get Hold Next within

Parent (GHNP) operations. A DL/I GET HOLD call is used to

retrieve a given segment occurrence into a work area, and

hold it there so that it may subsequently be updated or

deleted. ABDL does not have this requirement. Therefore,

when the KMS parser encounters one of these calls, the KMS

translator treats them as a corresponding GET call. With

the exception of the "H", the general form of the GET HOLD

calls is identical to the forms of the non-HOLD (i.e., GET)

counterparts. Thus, the mapping processes described in the

previous subsection are applicable to the GET HOLD calls,

with the exception of the special case of sequential

retrieval without the specification of SSAs. Such a call

has no meaning with a GET HOLD operator.

61

-' - -- -: ' .' :.- - -" .. : :: :: - - - .--. - - , .- ' .- -- -::' - ' ''.: . : -: ::- : : : . - i :. . . : :: . - - . . ii

c. The DL/I DLET to the ABDL DELETE

The DL/I DLET consists of a GET HOLD call,

together with the reserved word DLET immediately following

the last SSA in the GET HOLD portion of the call. When the

KMS parser encounters the GET HOLD portion of the call, the

KMS translator generates the appropriate ABDL RETRIEVE

requests. Then, when the reserved word DLET is parsed, the

KMS translator generates appropriate ABDL DELETE requests to

delete the current segment occurrence (i.e., for the current

position just established by the GET HOLD portion of the

call), as well as all of the children, grandchildren, etc.

(i.e., the descendants) of the current segment occurrence.

An example of such a call is as follows:

GHU course (ctitle = 'mlds')
offering

DLET

Assuming that there is only one offering of the course

entitled "mlds", this call deletes the occurrences of that

course and offering, along with all the teachers and

students associated with them. The series of ABDL requests

generated for such a call is as follows:

62

. . . .

[RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))

(CNUM) BY CNUM I

I RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ****))

(DATE) BY DATE I

I DELETE ((TEMPLATE = OFFERING) and
(CNUM = ****) and
(DATE = ******)) 3

[DELETE ((TEMPLATE = TEACHER) and
(CNUM = ****) and
(DATE = ******)) 3

[DELETE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE = ******)) I

In general, a single RETRIEVE request is generated for each

SSA in the GET HOLD portion of the DL/I DLET. Then, for

each segment type subordinate to the segment type referenced

in the last SSA: (1) if the segment type is a leaf, a

single ABDL DELETE is generated for that segment, and

(2) if the segment type is not a leaf, a pair of ABDL

requests are generated for that segment, one RETRIEVE and

one DELETE. In our example, TEACHER and STUDENT are leaf

segment types, and thus, no additional RETRIEVE requests are

generated for those segment types. Notice that each

RETRIEVE request simply retrieves the sequence-field

attribute for the appropriate segment type. The sequence-

field values are all that is required, since no information

is returned to the user as a result of these RETRIEVE

63

. :: - : " *" • .":' - ..

requests. These are the values required to complete the

DELETE requests, specifying the complete hierarchical path

from the root to the segment to be deleted.

d. The DL/I REPL to the ABDL UPDATE

We are implementing DL/I in an interactive

language interface. However, DL/I is an embedded database

language that is invoked from a host language (i.e., PL/I,

COBOL, or System/370 Assembler Language) by means of

subroutine calls. The syntax for providing an appropriate

attribute-value pair to be changed during a DL/I REPL call

is resident in the host language, not in the DL/I data

language itself. In order to make an embedded language

function interactively, we are forced to introduce

additional syntax for the language interface. This

additional syntax does not represent a change to the DL/I

data language, but rather, serves only to facilitate our

interactive implementation of the normally embedded data

language, DL/I. Therefore, we have implemented the

following syntax in the DL/I REPL which allows the user to

input the attribute-value pair they desire to change:

CHANGE attributename TO attributevalue

The DL/I REPL consists of a GET HOLD call, with our

additional syntax immediately following the last SSA in the

GET HOLD portion of the call, and then the reserved word

REPL. When the KMS parser encounters the GET HOLD portion

64

of the call, the KMS translator generates the appropriate

ABDL RETRIEVE requests. When the KMS parser encounters our

additional syntax, it saves the attribute-value pair in

local variables for subsequent use by the KMG translator.

Then, when the reserved word REPL is parsed, the KMS

translator generates the appropriate ABDL UPDATE request to

update the current segment occurrence, i.e., for the current

position just established by the GET HOLD portion of the

call. An example of such a DL/I REPL call is as follows:

GHU course (ctitle = 'mlds')
prereq (ptitle = "mdbs')

CHANGE ptitle TO "mbds"
REPL

The series of ABDL requests generated for such a DL/I REPL

call is as follows:

E RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))

(CNUM) BY CNUM I

I RETRIEVE ((TEMPLATE = PREREQ) and
(CNUM = ****) and
(PTITLE = Mdbs))

(PNUM) BY PNUM I

I UPDATE ((TEMPLATE = PREREQ) and
(CNUM = ****) and
(PNUM =

<PTITLE = Mbds> I

65

Notice that each RETRIEVE request simply retrieves the

sequence-field attributes for the appropriate segment type,

i.e., like the DL/I DLET, no information is returned to the

user as a result of these RETRIEVE requests. As is the case

with ABDL, we may only update a single attribute value in

each DL/I REPL call. However, each DL/I REPL call updates

that particular attribute-value pair in all multiple record

occurrences that may exist.

e. The DL/I ISRT to the ABDL INSERT

As in the case of the DL/I REPL, we are forced

to introduce additional syntax to allow the DL/I ISRT to

function in our interactive language interface. In this

instance, we have implemented the following syntax for the

DL/I ISRT, which allows the user to build the new segment to

be inserted to the database:

BUILD C(attr_l, ... , attrn)] : (value_1, ... , valuen)

If values are to be inserted for each attribute of the

segment type, there is no requirement to list the attribute

names. Only the attribute values need be listed. However,

they have to appear in the same order in which they were

defined during the original definition of the database. A

value for the sequence-field attribute may not be omitted

from the list. Due to the ABDL requirement that the INSERT

request include values for all attributes, in the case where

the user does not specify values for all attributes in the

66

segment, the KMS translator inserts default values. We use

a zero (0) and a "Zz" as the default values for the data

types integer and character, respectively.

The DL/I ISRT consists of our additional syntax

to build a new segment occurrence, followed by a sequence of

SSAs, the first of which is preceded by the reserved word

ISRT. This sequence of SSAs has to specify the complete

hierarchical path from the root to the segment to be

inserted. An example of such a call is as follows:

build (tnum, tname) : (1234, "hsiao')
isrt course (ctitle = mbds °)

offering (date = 850430)
teacher

The series of ABDL requests generated for such a DL/I ISRT

call is as follows:

E RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mbds))

(CNUM) BY CNUM I

I RETRIEVE ((TEMPLATE = OFFERING) and

(CNUM = ****) and
(DATE = 850430))

(DATE) BY DATE I

I INSERT (<TEMPLATE, TEACHER-,
<CNUM, ****:>,
<DATE, ******:>,

<TNUM, 1234>,
<TNAME, Hsiao>) I

67

C. FACILITIES NOT PROVIDED BY THE IMPLEMENTATION

Oiv- original intent has been to demonstrate that the

hierarchical interface could indeed be developed and

implemented. There are some facilities of DL/I that are not

included in our implementation. Some of these facilities

have more to do with providing an environment for the

running of batch applications, than with supporting a

germane hierarchical interface. For others, the programming

time and effort required to incorporate them would be too

costly for the benefits derived. However, this is not to

imply that such facilities would not be useful. This

section is devoted to describing the most prominent features

of DL/I that are not supported by the language interface.

1. Interfacing the User

In our hierarchical interface, there is no concept

of types of logical database records (LDBRs). An LDBR type

may be thought of as a hierarchical arrangement of segment

types derived from the underlying physical database record

(PDBR) hierarchy. Any segment type of the PDBR hierarchy

may be omitted from the LDBR hierarchy, and the attributes

of an LDBR segment type may be a subset of those o+ the

corresponding PDBR segment type. However, under our

implementation, the logical database and the physical

database are one in the same. Therefore, our interface is

limited to data definition language (DDL) and data

manipulation language (DML) statements, and provides no data

81

3. Semantic Analysis

When the user desires to process DL/I requests

against an existing database, the KMS first forms the

equivalent ABDL requests. Then the KMS performs a semantic

analysis of these current ABDL requests, relative to those

requests generated during the previous call(s) to the KMS.

The current ABDL requests are then integrated with those

requests generated for the previous call, in a manner that

depends upon the outcome of the semantic analysis.

In general, semantic analysis is only required when

the current DL/I call is of the GN or GNP variety. Since

these operations do not require the user to specify the

complete hierarchical path, from the root to the desired

segment, they have to be semantically analyzed relative to

the previous DL/I GET operation (of any type) or ISRT

operation. Specifically, the segment type referenced in the

first SSA of the GN or GNP has to either : (1) match one of

the SSAs in the previous DL/I call, in which case the two

requests overlap, or (2) be the next segment type in the

hierarchical path that logically follows the last SSA of the

previous DL/I call, in which case the current call is a

continuation of the previous call.

80

(4) Command Code V. DL/I GNP calls only

retrieve segments of the current parent type, as established

by the previous DL/I call. By using the V command code, any

ancestor may be designated as the current parent type.

Therefore, the following sequences of DL/I calls retrieve

identical student records:

GU course GU course
offering offering

GNP student GN offering *V
student

Similarly, the following sequences of DL/I calls retrieve

identical prerequisite records:

SU course
GU course offering
GNP prereq GN course *V

prereq

The ABDL requests generated for such calls are no different

than for similar requests not specifying the V command code.

Again, the command-code flag is set by the translator to

allow the KC to identify the functionality of these

requests. The V command code may not be used with the last

SSA of the call, nor may it be used in an SSA that includes

occurrence qualification conditions, i.e., boolean

predicates following the segment name.

79

(3) Command Code F. Command code F provides a

means of stepping backwards under the parent segment type

that has been established as the current position within the

database. As such, it is only specified when performing a

GN, or GNP, DL/I GET call. As far as the KMS translator is

concerned, there is no difference between such a call and a

normal GN, or GNP. The translator generates the same series

of ABDL requests in both cases. However, it does set a

command-code flag that allows the KC to identify the

functionality of these requests. An example using command

code F is as follows, where we assume that the current

position within the database has been established by one of

the following sequences of DL/I calls:

GU course GU course
offering GNP offering

GNP student

Then, corresponding subsequent calls that may be made by the

user, specifying command code F, are as follows:

GNP teacher *F GNP prereq *F

Command code F is disregarded if it is used at the root

segment level (i.e., the root has no parent to step

backwards under), or with a DL/I GU call.

78

Notice that it is necessary for the user to build one

segment for each SSA of the call, i.e., one segment for each

segment type to be inserted. The series of ABDL requests

generated for such a call is as follows:

E INSERT (<TEMPLATE, COURSE>,
<CNUM, Cs69>,
<CTITLE, Zz>,
<DESCRIPN, Zz>))

I INSERT (<TEMPLATE, OFFERING>,
<CNUM, Cs69>,
<DATE, 850430>,
<LOCATION, Monterey>,
<FORMAT, Zz>) J

C INSERT (<TEMPLATE, TEACHER>,
<CNUM, Cs69>,
<DATE, 850430>,
<TNUM, 1234>,
<TNAME, Hsiao>) J

One ABDL INSERT is generated for each SSA in the DL/I ISRT.

Notice that no ABDL RETRIEVE requests are generated, since

by definition, the sequence-field values have to be input by

the user when building each new segment. These sequence-

field values are saved by the KMS in local variables, so

that they may be carried along, from segment to segment, as

the translator successively generates each ABDL INSERT

request. Also notice that three attribute values, not

entered by the user when building the segments, have been

defaulted to the value "Zz".

77

The only difference between these requests and those that

would be generated without specifying command code D, is

that the target lists for those SSAs specifying command code

D include all the attributes of the segment type, instead of

merely the sequence-field attribute. Those segment types

specifying command code D are to be returned to the user.

(2) Path Insertion (Command Code D). Normal

ISRT operations insert data only for the segment type

specified in the last SSA of the ISRT call. Clearly, the

parent and grandparent segments for such a segment type have

to already exist within the database. With the

specification of command code D in the DL/I ISRT, multiple

segments may be inserted to the database in a single call.

However, the segment types to be inserted still have to form

an appropriate path that is consistent with the logical

structure of the database, i.e., the structure defined by

the hierarchical schema. Therefore, a parent segment is

inserted; its child may be inserted next, since its parent

now exists; and similarly for all other SSAs. The command

ctde D specification is required only in the first SSA of

the DL/I ISRT. An example of such a call is as follows:

build (cnum) : ('cs69")
build (date, location) : (850430, 'montei-ey')
build (tnum, tname) : (1234, 'hsiao')
isrt course *D

offering
teacher

76

asterisk, followed by the appropriate character, immediately

after the segment name in the SSA.

(1) Path Retrieval (Command Code D). Normal

GET operations retrieve data only for the segment type

specified in the last SSA of the DL/I call. When command

code D is included in an SSA, in connection with a GET

operation, the effect is to retrieve data for the segment

type specified in that SSA. In general, the D command code

may be specified at some levels and not at others. The

effect is to retrieve just the indicated segments. Of

course, it is not necessary to specify the D command code in

the final SSA, since this segment is retrieved by

definition. An example of such a call is as follows:

GU course *D
offering
student

The series of ABDL requests generated for such a call is as

follows:

E RETRIEVE (TEMPLATE = COURSE)
(CNUM, CTITLE, DESCRIPN) BY CNUM]

C RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ****))

(DATE) BY DATE]

C RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE = ******))

(SNUM, SNAME, GRADE) BY SNUM I

75

..

the ssa rule, which also is now fully satisfied. Then,

control returns to the dmlstatement rule, and the following

SSL is invoked:

dmlstatement: J ssa

concat all attrs to last RETRIEVE req
concat ") BY "seq-fld' 3" to last req

We now access the schema, again Via the curr_segptr, and

obtain all the attributes for the COURSE segment, and

concatenate them to the abdlstr. Of course, they are

separated by commas. Next we concatenate ") BY " to the

abdlstr. Then we access our only tgt-list item (where we

previously stored the sequence field of the COURSE segment),

and concatenate "CNUM]" to the abdlstr.

Now, the dmlstatement is fully satisfied and

control returns to the start statement that called it. The

parsing and translation processes are now complete.

g. Segment Search Argument Command Codes

A segment search argument (SSA) may optionally

include a command code. Command codes are special codes

which allow variations to the basic DL/I calls. Each

command code is represented by a single alphabetic

character. Command codes are specified by writing an

74

The currsegptr has previously been set to the COURSE

segment, which is the root of our example database.

Therefore, we concatenate "TEMPLATE = COURSE" to the

abdlstr.

Now control returns to the seg_srcharg rule,

and the following SSL is invoked:

seg_srch_arg: dlioperator segment-name L 6

concat ") " to abdlstr

}

E K
dli_operator E K

We simply concatenate ") " to the abdl_str, and then the

seg_srcharg rule continues, by calling the E rule. The

E rule searches for a GOTO statement in the input. Since no

GOTO statement exists in this DL/I call, the empty portion

of the E rule is matched, satisfying the E rule. Control

returns to the seg_srch_arg rule, which then calls the

K rule. The K rule searches for a dliop in the input,

i.e., the reserved word DLET or REPL. Since no such

operator exists in this DL/I call, the empty portion of the

K rule is matched, satisfying the K rule.

Next, control reverts to the seg srcharg rule,

which is now fully satisfied. Therefore, control returns to

73

I

we allocate and initialize the abdlstr to be used to

-accumulate the ABDL request, and the first tgtlist item to

hold the sequence-field attribute to be retrieved. We then

copy "E RETRIEVE (" to the abdlstr. We also access the

schema, via the curr_segptr set by validparento, and

obtain the segment sequence field and its maximum length,

which is then stored in the tgtlist item just allocated.

Firrally, we save the value of the segment name in a local

variable for later use.

We now continue with the seg srcharg rule,

which calls the L rule. The L rule searches for a command

code token in the input. Since no command code exists in

this DL/I call, the empty portion of the L rule is matched,

satisfying the L rule. Control reverts to the seg srch arg

rule, which then calls the 6 rule. The G rule searches for

a segment occurrence qualification (a boolean predicate) in

the input. Since no such expression exists in this DL/I

call, the empty portion of the G rule is matched, satisfying

the G rule, and the following SSL is invoked:

G: empty

if (currsegptr = the root of the db)
concat "TEMPLATE = segmentname" to abdl _str

end-if

•I

LPAR boolean RPAR

72

.

Next, even though the segsrcharg rule is not

completely satisfied, we need to perform some translation.

The following SSL is invoked, before the L rule is called:

segsrcharg:
dli_operator segmentname

segptr = the root segment of the db
if (! validparent(segptr, seg, currsegptr))

print ("Error - segment_name does not exist")
perform yyerror()
return

end_if
if (operatorflag != ISRT)
alloc and init the abdlstr and tgt_list item
copy "E RETRIEVE (" to the abdlstr
copy segment seqfld and length to tgt_list

endif

save segmentname for later use

L 6 E K
1 dlioperator E K

We set a pointer to the root of the database, which is then

passed as an argument to the validparent() function. The

valid_parent() function traverses the hierarchical schema to

determine whether a segment type with the given segmentname

exists, and returns true, along with a pointer to that

segment type in the hierarchical schema (currsegptr), if

found. Otherwise, validparent() returns false, in which

case an error message is printed, an error routine is

called, and then we simply return from the mapping process.

Therefore, since COURSE is a valid segment name, we

continue. The operator_flag has already been set to GU, so

71

.

dmlstatement: J ssa

J: empty
H

H: IDENTIFIER
1 VALUE

ssa: seg_srch_arg
ssa segsrcharg

seg_srch_arg:
dlioperator segment_name L G E K

1 dlioperator E K

segment_name: IDENTIFIER

L: empty
ASTERISK N

6: empty
LPAR boolean RPAR

E: empty
1 GOTO H

NFGOTO H

K: empty
dli _op

Figure 17. The KMS dmlstatement Grammar.

calls the seg_srcharg rule, which then calls the

dli_operator rule. The dlioperator rule (not shown in

Figure 17) recognizes the GU token of the DL/I call, sets

the operatorjlag to signify a GU operation has been

discovered, and returns control to the seg_srcharg rule.

The seg_srcharg rule then calls the segmentname rule which

recognizes the IDENTIFIER token (i.e., course) in the DL/I

call and returns control to the seg_srcharg rule.

70

• "
-

" "" I. •..............

*W.

The relevant grammar is shown in Figure 17. The source DL/I

call to be utilized for our example is the following:

GU course

The ABDL request generated in response to such a DL/I call

is as follows:

I RETRIEVE (TEMPLATE = COURSE)
(CNUM, CTITLE, DESCRIPN) BY CNUM I

To begin our discussion, let us first

synchronize the reader. At the beginning of the mapping

process, the parse descends the grammar hierarchy searching

for appropriate tokens in the input that may satisfy one of

the grammar rules. Therefore, the parser descends through

the ddl _statement rules (data definition language). After

finding no matching tokens for those rules, the parser

eventually descends to the dmlstatement rule (data

manipulation language).

First, when the dmlstatement rule is called, it

immediately calls the J rule. The J rule searches for a

label in the input. Since no label exists in this DL/I

* call, the empty portion of the J rule is matched, satisfying

the J rule. Control reverts to the dml statement rule,

which then immediately calls the ssa rule. The ssa rule

69

. . .

".'". .'." .' ."'. "."".' ." " % "" " ".""." '',""-'''',' -'.'- '.'''.'. %'°.. ",'".'."..'.,.-.". ."."".".'.. .,..'."
°

. ..
- -

..
'

.

. " *- , - - % -' i -, - - . - -- , r-r nr ri - - .- r-.- r- a-

Although the sequence field of the OFFERING segment has been

specified in its SSA, the translator does not recognize this

fact. Therefore, the RETRIEVE request for the OFFERING

segment is mechanically generated, in spite of the fact that

we are given the value that we subsequently retrieve when

executing this request. This RETRIEVE returns only one

date, in this case, 850430. No RETRIEVE request is

generated for the TEACHER segment. In general, no RETRIEVE

request is generated for the last SSA in the DL/I ISRT.

This is because the last SSA represents the segment to be

inserted and, by definition, the user gives us the

sequence-field value when building the new segment. The KMS

translator did not have to insert any default values, as all

TEACHER attributes have been listed by the user in building

the new segment.

f. The Mapping Processes: An Example

In this subsection we present an illustrative

example of the KMS mapping processes (i.e., parsing and

translation) for a simple DL/I GU call. We begin by showing

the grammar for the dmlstatement portion of the KMS. We

then step through the grammar and demonstrate appropriate

portions of our design in system specification language

(SSL). We only show those portions of the design that are

relevant to the example, i.e., those that would actually be

executed. The entire KMS design is shown in Appendix C.

68

control facilities such as the SENSEG (sensitive segment)

specification, the program communication block (PCB), or the

PROCOPT (processing options) specification.

As mentioned in Chapter II, our interface data

structures have been constructed to facilitate future use by

multiple users. This would allow the LDBR concept to be

supported by incorporating the hierarchical database schemas

into the user information structure (userinfo shown in

Figure 8). These schemas would be logically external and

user-specific with respect to the entire list of physical

database schemas that are still global.

2. Seqment Insertion Based on Current Position

A normal DL/I ISRT call specifies the complete

hierarchical path from the root segment to the segment type

being inserted. Although not included in our language

interface, it is possible to omit the specification of the

complete hierarchical path and to quote just the type of the

new segment. In such a case, the current position within

the database, that has been established during the previous

call to the KC, is used to determine where the new segment

is inserted.

This option, although not planned for during the

design, is supported by the KMS parser/translator. However,0
as in the case of the GN or GNP, the specification of an

incomplete hierarchical path makes it necessary to

semantically analyze the ISRT SSAs and the previous DL/I

82

...' - . i . : : : . .-- L : : -.-

call. We feel the programming effort involved to go back

and provide such a facility, although not complex, is time-

consuming f or the benefits to be derived.

3. Additional SSA Command Codes

The language interface supports the use of command

codes D, F and V, as described earlier. These command codes

are probably the most useful of the set of available DL/I

command codes. For details of the remaining command codes

(LI N, 0, U), see ERef. 9: pp. 4.1-4.33.

The remaining command codes have not been

implemented because we feel the effort involved to be too

time-consuming to justify their benefits. Almost any DL/I

operation that may be accomplished using these command codes

may be done in an alternate fashion in our language

interface, as it is presently implemented. A possible

exception to this is command code 0, which concerns a data

security concept that is beyond the scope of our present

implementation.

63

5 5-5- -5 - -- - -- - -5

V. THE KERNEL CONTROLLER

The Kernel Controller (KC) is the third module in the

DL/I language interface and is called by the language

interface layer (LIL) when a new database is being created

or when an existing database is being manipulated. In

either case, the LIL first calls the Kernel Mapping System

(KMS) which performs the necessary DL/I-to-ABDL

translations. The KC is then called to perform the task of

controlling the submission of the ABDL transaction(s) to the

multi-backend database system (MBDS) for processing. If the

transaction involves inserting, deleting or updating

information in an existing database, control is returned to

the LIL after MBDS processes the transaction. If the

transaction involves a retrieval request (i.e., GU, GN,

GNP), the KC sends the translated ABDL request to MBDS,

receives the results back from MBDS, loads the results into

the appropriate file buffer, and calls the Kernel Formatting

System (KFS) to format and display the results to the user.

The other retrieval types (i.e., GHU, GHN, GHNP) are

processed similarly, but the KFS is not called. These

retrievals are used only to establish a currency position

within the hierarchical database.

84

C.: . . *v-- "7 %.*

-A -- . .."

These ideas may be best illustrated by examining the

following example. Suppose the user issues the following

DL/I request:

GU course (ctitle = 'mlds')
offering (date = 850430)
student (grade = 'a')

This request is translated to the following series of ABDL

requests:

[RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))

(CNUM) BY CNUM J

E RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ****) and
(DATE = 850430))

(DATE) BY DATE J

C RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM .****) and
(DATE = ******) and
(GRADE = A))

(SNUM, SNAME, GRADE) BY SNUM I

The KC is now called to control the transmission of these

requests to MBDS for execution. Generally, this is

accomplished by forwarding the first RETRIEVE request to

MBDS. Results are gathered and placed in a file buffer.

Notice that the next RETRIEVE is not fully-formed.

Therefore, it is necessary to replace the asterisks with a

value that is extracted from the first RETRIEVE request's

65

. . . .-' . .. ' -' .. ' . ' . " ' . - ' • , " . . - . . - . % ' o . " " . . ., • . ' ' - .

I

file buffer. In this example, the value is a course number

(CNUM). Again, the request is forwarded to MBDS, and

appropriate results are obtained. The last RETRIEVE request

is also not fully-formed. In this case, attribute values

from both the first and second RETRIEVE requests are

I utilized to complete the ABDL request. Thus, a value is

pulled from the file buffer associated with the second

request, and the same CNUM used to build the second request

is again used to form the final request. The fact that a

new value is not pulled from the first request's file buffer

illustrates currency within the hierarchical database.

Specifically, the values that are used in subsequent

RETRIEVE requests have to be consistent with those values

used in earlier requests. This ensures that the path used

to retrieve values from the database is consistent with

previous retrievals and the database hierarchy.

The procedures that make up the interface to the KDS

(i.e., MBDS) are contained in the test interface (TI) of

MBDS. To fully integrate the KC with the KDS, the KC calls

procedures which are defined in the TI. Due to upcoming

hardware changes in MBDS, we decided not to test the KC on-

line with the TI. Our solution to this problem has been to

design the system exactly as if it were interfacing with the

TI. However, for each call to a TI procedure, we have

created a software stub that performs the same functions as

the actual TI procedure. The reader should realize that all

86

,"•I , ? ' ' ' ' ' '' ' ' _ ' ' ' ' ' ' ' ' '' / , ' '

interactions with the TI procedures described in the KC are

actually made with these software stubs, rather than with

the on-line TI procedures.

In this chapter we discuss the processes performed by

the KC. This discussion is in two parts. First, we examine

the data structures relevant to the KC, followed by an

examination of the functions and procedures found in the KC.

Appendix D contains the design of our KC implementation,

written in a system specification language (SSL).

A. THE KC DATA STRUCTURES

In this section we review some of the data structures

discussed in Chapter II, focusing on those structures that

are accessed and used by the KC. The first data structure

used by the KC is the dliinfo record shown in Figure 18.

The KC makes use of only two fields in this record. The

first, curr_sitpos, is a pointer to an Sitstatusinfo

record, shown in Figure 19. This record indicates to the KC

at what location in the list of Sitinfo nodes execution is

to begin. The second field of interest, buffcount, is an

integer used to maintain control of the file buffers

associated with the results of each RETRIEVE request. For

instance, the results associated with the first RETRIEVE

request of our last example are placed in a file buffer with

an extension of "0". The buffcount is incremented by one,

87

struct dliinfo

struct currdbinfo curr_db;
struct fileinfo file;

struct traninfo dli_tran;

struct ddlinfo *ddlfiles;

int answer;

int operation;

int error;
union kms_info kms_data;

struct Sitinfo *sit_list;

struct Sitinfo *kms_sit;
struct hrecnode *savedseg_ptr;

struct hrec _node *savedseg_ptr2;

struct Sitstatus info *fst_sitpos;

struct Sitstatusinfo *curr sitpos;
int buff_count;

Figure 18. The dliinfo Data Structure.

and the results associated with the second request are

placed in a file buffer with an extension of "l".

As noted above, the Sitstatusinfo record indicates to

the KC where execution of a group of ABDL requests is to

begin. (See Figure 19.) The first field, reqpos, is a

pointer to an Sitinfo record, which holds the information

struct Sitstatusinfo
r

struct Sitinfo *reqpos;

struct Sit statusinfo *next;
int status;

Figure 19. The Sitstatus info Data Structure.

8

required by the KC to properly control the execution of the

request. The following field, next, is a pointer to the

next Sitstatusinfo node that the KC is to process. This

field may be NULL if no other requests are to be processed.

The last field, status, is an integer which indicates how

much of the current request overlaps the previous request.

For example, if the DL/I request shown in our first example

is followed by:

GN offering (date = 850430)
student (grade = 'a')

then the status field would indicate that this request

overlaps our first request at the OFFERING and STUDENT

segments. There may also be no overlap between requests.

For instance, if our example database (see Figure 3)

contained GRADUATE and UNDERGRADUATE segments below the

STUDENT segment, and if our first example is followed by:

GN graduate (gname = 'jones')

then there is no overlap.

The Sitinfo record, shown in Figure 20, contains the

information needed by the KC to process a DL/I request. The

first two fields, prev and next, are pointers to the

previous and next Sitinfo nodes, respectively, and are used

by the KC to obtain information about the previous and next

89

Sitinfo nodes. The third field, parent, is also a pointer

to an Sitinfo node. However, in this case the pointer is

to the parent node. Information about the parent node is

required by the delete and special-retrieve procedures for

proper execution. The next two fields, child and sibling,

are pointers to child and sibling Sit_info nodes. They are

also used to process deletes and special-retrieves. The

reader should note that these fields effectively represent

the hierarchical form of the database, although the nodes

are physically stored as a linearly-linked list. The

following field, loop, is also a pointer to an Sitinfo

node, but is used to indicate where the KC should loop when

struct Sitinfo
{

struct Sitinfo *prev;
struct Sit-info *next;
struct Sitinfo *parent;
struct Sit-info *child;
struct Sit info *sibling;
struct Sit info *loop;
struct Sit info *nfloop;
char *abdl-req;
char *template;
int operation;
int cmdcode;

int or;
char seg_name[RNLength + 1];

int BOR;
int EOR;
struct hie_fileinfo *result_file;

£

Figure 20. The Sitinfo Data Structure.

90

a GOTO is encountered in the DL/I request. For example,

suppose the user issues the following DL/I request:

GU course (ctitle = 'mlds')
offering (date = 850430)

xx GN student (grade = 'a')
GOTO xx

This request retrieves all students receiving a grade of "A"

in the course entitled "mlds", that is offered on 850430.

We have seen that without the GOTO, this request is

translated to three ABDL RETRIEVE requests. Since we desire

to retrieve all STUDENT segments for the above request, it

is necessary to provide a pointer to the Sitinfo node that

we may loop on. In this case, it is the Sit info node

associated with the retrieval of the STUDENT segments, i.e.,

the last RETRIEVE shown in our first example.

The next two fields, abdlreq and template, are pointers

to character strings. The first, abdl_req, holds the ABDL

request previously parsed by the KMS. This array may

contain place-holding asterisks if the request is not

fully-formed. The template field is used to build a fully-

formed ABDL request. Thus, it never contains asterisks.

These have been substituted with appropriate values from the

file buffers. The reader may ask why the fully-formed ABDL

request is not built on top of the abdl_req field? The

problem with this is that abdl_req may be used in subsequent

91

7.

ABDL actions with different values being substituted for the

asterisks with each new action. If the place-holding

asterisks are destroyed, then there is no way to determine

where to place the new values in the request. The following

field, operation, is an integer indicating the DL/I

operation associated with this Sit-info node, i.e., GU, GN,

GNP, DLET, ISRT, GHU, GHN, GHNP, SPECRET. (Here, we use a

SPECRET operation code to refer to GN and GNP requests with

no SSAs.) The KC uses this information to invoke the

correct procedure to execute the ABDL equivalents of the

DL/I request. The next field, cmd_code, is a flag set by

the KMS to indicate the presence of a particular SSA command

code in the DL/I request.

The following field, or, is a flag that indicates if an

""or is present in an ABDL request. For example, the KMS

sets this field to TRUE as a result of the "or" between the

dates in the)FFERING SSA of the following DL.'I request:

GU course
offering (date = 840430 or date = 850430)

The KC needs to know this information when it builds a

request for subsequent execution. If the above request is

issued, its translation is as follows:

92

[RETRIEVE (TEMPLATE = COURSE)
(CNUM) BY CNUM I

[RETRIEVE (((TEMPLATE = OFFERING) and
(CNUM = ****) and
(DATE = 840430))

or ((TEMPLATE = OFFERING) and
(CNUM = ****) and

(DATE = 850430)))
(DATE, LOCATION, FORMAT) BY DATE I

Because of the "or", the same course number has to be used

in both instances of the asterisks in the second RETRIEVE.

The or field is used to signal the KC when this occurs.

The next field, segname, holds the segment name

specified in the SSA of the DL/I request. The following two

fields, BOR and EOR, serve as flags indicating the beginning

and end of a request. If we use our last example, BOR for

the first RETRIEVE request is set to TRUE, while EOR for the

second (last) RETRIEVE is set to TRUE. These values are

used to cortrol the execution of ABDL requests. For

instance, the KC may continue to execute RETRIEVEs until it

detects a TRUE value in the EOR field.

The last field, resultfile, is a pointer to the

hie_file info record, shown in Figure 21. This record

stores information about file buffers containing the resLIlts

obtained for each RETRIEVE request. The first field, buff,

contains the file name and file id. This information is

required so that the appropriate files may be written to,

read from and appended to, as necessary. The second field,

9;

" - ° .=.- % ° . " ' °. - ,. .

struct hiefileinfo

struct fileinfo buff;
int count;
int status;

int buffloc;
char *currbuff _val;

Figure 21. The hiefileinfo Data Structure.

covnt, is simply an integer representing the number of

results in the file buffer. The next field, status, serves

as a flag so that a file buffer is opened under the correct

status. The fourth field, buff_loc, indicates the KC's

location in the file buffer. For instance, after the first

value is pulled from a file buffer, this field indicates

that the KC's position is now at the beginning of the second

result. The last field is a pointer to a character string

and holds the last result value pulled from the file buffer.

This field is used to maintain a currency position in the

database hierarchy. Once a value is obtained from the file

buffer, it is difficult to reset the file pointer to the

location where the value has just been obtained. It is

easier to simply store the value so that it may be used in

the building of subsequent RETRIEVE requests.

94

B. FUNCTIONS AND PROCEDURES

The KC makes use of a number of different functions and

procedures to manage the transmission of the translated DL/I

requests (i.e., ABDL requests) to the KDS. Not all of these

functions and procedures are discussed in detail. Instead,

we provide the reader with an overview of how the KC

controls the submission of the ABDL requests to MBDS.

1. The Kernel Controller

The dlikc procedure is called whenever the LIL has

an ABDL transaction for the KC to process. This procedure

provides the maste- control over all other procedures used

in the KC. The first portion of this procedure initializes

global pointers that are used throughout the KC.

Specifically, kccurrpos is set to point to the first

Sitinfo node that is to be processed by the KC, and kcptr

is set to the address of the lidli structure for a

particular user. The remainder of this procedure is a case

statement that calls different procedures based upon the

type of ABDL transaction being processed. If a new database

is being created, the loadtables procedure is called. 1+

the transaction is o+ any other type, then requests hander

is called. I the transaction is none o+ t'e at',.-e, t

i s an error _and A-n e- 'or mossage i qener at i - - r

retijrned to the LIL.

,A D-RI59 542 THE DESIGN AND INPLENENTATION OF A HIERARCHICAL 2/3
I INTERFACE FOR THE MULTI-LINGUAL DATABASE SYSTEM(U)
I NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UNCLSSIFIED TP BENSON ET AL. JUN 05 F/G 9/2 ML

EEMEEE nE

- 1111.25 . .6.

NAIOA liii- U OF6 STNDRD-6

1III~ ..

2. Creating a New Database

The creation of a new database is the least

difficult transaction that the KC handles. The load-tables

procedure is called, which performs two functions. First,

the test interface (TI). dbl_template procedure is called.

This procedure is used to load the database-template file

created by the KMS. Next, the TI dbldir tbls procedure is

called. This procedure loads the database-descriptor file.

These two files represent the attribute-based metadata that

is loaded into the KDS, i.e., MBDS. After execution of

these two procedures, control returns to the LIL.

3. The GU, GN, GNP, 1SRT and REPL Reguests

The GU, GN, GNP, ISRT and REPL requests are all

handled in a similar manner. For any one of these types of

operations, the GUproc procedure is called. The following

examples illustrate the logic used in this procedure which

controls the processing of these types of requests. Suppose

the following DL/I request is issued by the user:

GU course
offering (date = 850430)
student (grade = 'a')

The KMS translates this DL/I request into the following

three ABDL RETRIEVE requests:

96

*pS~-... . . .

I RETRIEVE (TEMPLATE = COURSE)
(CNUM) BY CNUM I

I RETRIEVE ((TEMPLATE = OFFERING) and
(CNUM = ****) and
(DATE = 850430))

(DATE) BY DATE 3

I RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE = ******) and
(GRADE = A))

(SNUM, SNAME, GRADE) BY SNUM 3

Also suppose this is the first request the user issues

against the database. The kc-currpos is set to point to

the first ABDL RETRIEVE request shown above. In addition,

the fstsit_pos of dli _info indirectly points to the first

RETRIEVE. Therefore, the first task GU proc accomplishes is

to determine if kc_curr_pos and fstsitpos point to the

same Sit-info node. If they do, then the KC knows that this

is the first request issued by the user, and that the first

RETRIEVE request is fully-formed (the case where the two

fields are not the same is examined in our next example).

Since the first RETRIEVE request is complete, it may

be immediately forwarded to the KDS for execution. This is

accomplished by calling dli_execute. This procedure uses

two TI procedures and the dlichk_requests_left procedure.

In general, dli execute sends the ABDL request to the KDS

and waits for the last response to be returned. Results for

a given request are placed in a unique file buffer

97

" . - . . .* °m' - a
'

o °'. % , " * *. *" *- .". *. *.-.*-

Y .71717

associated with each Sit info node. The file-results

procedure controls this process.

After the last response is returned, control is

returned to GUproc. Now, GUproc has to process the

remaining RETRIEVE requests until the end-of-request +lag is

detected. Therefore, kccurrpos now points to

kccurrpos->next, which is in this case, the second

RETRIEVE. However, this RETRIEVE request may not be

forwarded to the KDS because it is incomplete. Hence, the

buildrequest procedure is called to complete the request.

In this instance, a course number (CNUM) is substituted for

the place-holding asterisks. This value is obtained from

the first RETRIEVE's file buffer. Specifically, this value

is located in currbuff_val of the first RETRIEVE's

result file. This RETRIEVE may now be forwarded to the KDS

for execution in the same fashion as the first RETRIEVE.

Finally, the last RETRIEVE request has to be

processed. Again kccurr pos is set to point to

kc_currpos->next, i.e., the last RETRIEVE. This RETRIEVE

request is also incomplete, so build_request is called to

complete the request. However, a value from both the first

and second RETRIEVE's file buffer is used to complete the

request. We note that the same course number used to build

the second RETRIEVE is also used to build the last RETRIEVE.

This is because we have established a currincy position

within the database that is related tc, the first value in

98

.

-. _

the first RETRIEVE's i''ile buffer and the first value in the

second RETRIEVE's file buffer. As before, this request is

foe-warded to the KDS for execution once it is fully-formed.

If results are returned, then dli kfs is called to

display to the user the first STUDENT segment satisfying the

request. If, on the other hand, results are not returned,

then the KC has to retract a level in the hierarchy, obtain

the next value from that level's file buffer, and re-issue

the request to the KDS. In this example, the KC would

retract to the level of the second RETRIEVE, pull the second

value from its file buffer, substitute this value for the

asterisks related to the date in the last request, and again

forward the request to the KDS.

* Let's look at an extreme instance where the KC is

unable to obtain any STUDENT segments for any of the values

in the second RETRIEVE's file buffer. In this case, it

Swould be necessary to retract all the way to the level of

the first RETRIEVE, pull its second value from the file

buffer, substitute it for the asterisks in the second

RETRIEVE, and re-issue the request to the KDS for execution.

This process continues until either a STUDENT segment is

returned, or the KC uses the last value in the first

RETRIEVE's file buffer and no STUDENT segment is returned.

This would indicate that no STUDENT segments exist in the

database for this particular request.

99

Suppose now that the DL/I request we have just

discussed is followed by:

yy GN student (grade = 'a')
GOTO yy

The KMS translation of this DL/I request is as follows:

E RETRIEVE ((TEMPLATE = STUDENT) and
(CNUM = ****) and
(DATE = ******) and
(GRADE = A))

(SNUM, SNAME, GRADE) BY SNUM 3

This request is linked to the last RETRIEVE of the previous

example, and it is both a beginning-of-request and an end-

of-request. The KC is again called with kccurrpos now

pointing to the above RETRIEVE. The KC recognizes this

request as a GN operation, therefore, GUproc is called.

However, this time kc_curr_pos and fst_sitpos do not point

to the same Sitinfo node. Thus, this is not the first

request issued by the user. Therefore, subsequent action

taken by the KC is based on the status field in the

Sitstatus info record, set during the semantic analysis in

the KMS. If the status field is set to MATCHALL (indicating

SSA overlap between this, and the previous DL/I request),

then the KC determines if all values in the file buffer have

been returned. If they have, then it is necessary to

100

*. ~. .

retract to the next higher level and try to re-issue the

request. However, if all values in the file buffer have not

been returned, then dlikfs is called to display the next

value in the file buffer. In our example, the status field

is set to MATCHALL. Thus, the actions described above are

taken.

However, now suppose that our first example DL/I

request had been:

GU course
offering (date = 850430)

followed by:

GN student (grade = 'a')

In this instance, the status field is set to MATCHPART

(indicating the SSAs of this request are a continuation of

the previous DL/I request). The RETRIEVEs are identical.

However, the KC has to process and execute the RETRIEVE

request associated with "GN student..." before calling

dlikfs. This is because this RETRIEVE has not been

executed, as it had been when the status field had been set

to MATCHALL.

Let's return to our first example where the DL/I

request:

101

......- ~,.'..'-.'-.'..'- -,~~~~~~~~ ~~ ~~~ .. -. . '. -,, - - - , i . 1J - " .

GU course
offering (date = 858430)
student (grade = 'a')

is followed by:

yy GN student (grade = 'a')
GOTO yy

There is a GOTO in the second DL/I request, which means that

the loop pointer is set to a value other than NULL. In this

example, the loop pointer both emanates and points to the

RETRIEVE associated with the "GN student..." request.

Therefore, the loophandler procedure is called to control

the looping to this node and subsequent display of all

STUDENT segments satisfying the request. Although our

example does not show it, the loop pointer may point to an

Sit-info node in the middle of a group of requests. In this

case, the loophandler procedure processes all RETRIEVEs

from where the loop pointer points, to the end of the group

of requests. This is done until all results in the file

buffer pointed to by the loop pointer have been used.

The reader may notice that we have not discussed the

other DL/I request operations that are processed by the

GUproc procedure. This is because the logic is the same

whether the operation is a GU, GN, GNP, ISRT or REPL. The

KC knows that it is receiving a linked-list of requests,

102

"' - . I...'.' '... ". .""-". .-- .".. • . "

delimited by a beginning-of-request and an end-of-request.

Therefore, the logic in GUproc is predicated on detecting

these flags and processing all requests in between, without

regard to the specific operation.

4. The GHU, GHN, and GHNP Reguests

The GHU, GHN, and GHINP requests are handled in a

similar manner. The logic is exactly the same as that

described in tite last subsection for GUproc. However,

instead of calling dli_kfs to display a segment when the

end-of-request is detected, control is returned to dlikc

for further processing of any additional requests. The

intent of these operations is to establish a currency

position within the database. This is done by moving the

file-buffer pointer to the correct position within the

buffer. Therefore, the procedure that processes these

operations (i.e., GHUproc) moves this pointer, instead of

calling dli_kfs.

5. The DLET and SPECRET Reguests

DLETs and SPECRETs (i.e., GN and GNP with no SSAs)

are the most difficult operations for the KC to process.

The problem with handling these operations is that they

affect the entire database hierarchy as opposed to just a

linear path within the database. This idea is illustrated

by the following example. Suppose the user issues the

following DL/I request:

103

GHU course (ctitle = 'mlds')
offering (date = 850430)

DLET

This request first retrieves all course numbers for which

the course title is "mlds". This is followed by another

RETRIEVE request that gathers all dates for a course number

(retrieved above) and an offering date equal to 850430.

These RETRIEVEs are used to gather the results needed to

process the DLETs for this segment and all its children.

(In this case, the appropriate TEACHER and STUDENT

segments.) The KMS translation of this request is as

follows:

f RETRIEVE ((TEMPLATE = COURSE) and
(CTITLE = Mlds))
(CNUM) BY CNUM)

C RETRIEVE ((TEMPLATE = OFFERING) and

(CNUM = ****) and
(DATE = 850430))
(DATE) BY DATE J

I DELETE ((TEMPLATE = OFFERING) and
(CNUM = ****) and
(DATE = ******)))

I DELETE ((TEMPLATE = TEACHER) and

(CNUM = ****) and
(DATE = ******)))

I DELETE ((TEMPLATE = STUDENT) and

(CNUM = ****) and
(DATE = ******)) J

104

... +.. , . . m.. .~ .."+ + . -, i - : - . I - - . . .: + . - + + : -

The reader may easily discern that we are not only deleting

those records for which the course name is "mlds" and the

offering date is 850430, but we are also deleting the

children of any records for which these conditions are true.

Our solution to this problem is the use of mutual recursion.

Generally, when the KC detects that a DELETE operation is to

be performed it calls the Deleteproc procedure.

Delete proc deletes records from the database until the

kc-currpos pointer becomes NULL. During processing,

Delete-proc determines if a node to be deleted has a child

node. If the node does, then deletesetup is called. The

deletesetup procedure then calls Deleteproc for all child

records associated with this parent record. If we look at

our example again, we see that the first DELETE node has a

child, which is the DELETE-TEACHER node. This in turn has a

sibling, which is the DELETE-STUDENT node. Therefore, it is

necessary to delete all TEACHER and STUDENT segments that

are children of the OFFERING segment. The deletion of these

child segments is continued until the parent node's file

buffer is exhausted. This is the file buffer of the

DELETE-OFFERING node in our example.

The SPECRET operation works in a similar manner.

This operation is required when all the children of a

particular segment are also to be retrieved. Again, this

occurs during GN and GNP DL/I requests when no SSAs are

specified.

105

VI. THE KERNEL FORMATTING SYSTEM (KFS)

The KFS is the fourth module in the DL/I language

interface, and is called by the Kernel Controller (KC) when

it is necessary to display results to the user. The

transformation of data into the appropriate format is a very

simple task for the DL/I language interface. Unlike most

other language interfaces, no change in format is required.

The form that the data is in when it is retrieved from MBDS

is the same form in which it is to be displayed to the user.

The task of the KFS is reduced to simply printing out the

results obtained from the ABDL equivalents of the DL/I

requests. In this chapter, we discuss how the KC stores the

data that the KFS eventually displays, and how the KFS

outputs this data. Appendix E contains the design of the

KFS, written in a system specification language (SSL).

A. THE KFS DATA STRUCTURE

The KFS utilizes just one of the data structures defined

in the language interface. The kfs hie info record, shown

in Figure 22, contains information needed by the KFS to

process the results. The first field in this record,

response, contains the result from MBDS which is loaded by

the KC just prior to calling the KFS. The second field,

curr_pos, lets the KFS know where it is in the response

106

.. * ...-.. . -. - i . . ,. - • . .- -.. .- - .. *1i....

struct kfs hieinfo

char *response;
int currpos;

int reslen;
}

Figure 22. The kfshieinfo Data Structure.

buffer. This assists the KFS in maintaining the correct

orientation in the response buffer. The last field,

res_len, indicates the length of the response buffer. This

value is used as a halting condition. For instance, the KFS

continues to pull characters out of the response buffer

while the loop index is less than or equal to the reslen.

B. THE FILING OF DL/I RESULTS

The KC stores the results obtained from a DL/I request

by calling the fileresults procedure. This procedure first

determines whether the response being returned by MBDS is

the initial response to a DL/I request. If it is the

initial response, then the result file is opened for writing

in the response. If the incoming response is not the

initial one, then the results file is opened for appending

the new response to older responses. The procedure reads in

the name of the first attribute and stores it in a variable,

in addition to storing it in the results file. The

attribute value is then stored into the results file. A

while loop then handles the storing of the remaining

107

.1

'4-,
.J .J I I

'-I *J

* *
6 6

I

I,

/ //
I

" I
/ p

1

I'

C

i)
U) 0

t..
"-p

0

1 ~

AO 0

40

0 (10

49 3

~~1A6I 110%JF

. PA(A ItLO

o * -. .orN

*4V~.SL.*Q~.P4AE 122

.~PA4-F 11-7

* ~ ~ PA(A I'Ll

bligure .J4. ,'jntinued

L(L

00

'2A

U;

.4 J

4A rRG-Y%. V\OYw

/- - .-TUK.

-'~ue 3. .ontinue~d

11]7

it-c

S*.vv-~ ^t Pa.

-S.

F-irst oL nued

-~n: A.-

SE PA(.F 11(a

Ftiure 23. Hierarchic.al Datatase S3clicna Data .tructures

example of this is the di dli tran field of the dli info

structure in Figure 24 on page 122. The field di dlitran

is a structure of type tran info. The bracket lines and the

periods indicate this.

We note that the diagram has a few instances of UNIONS.

A union is a construct that allows the user to connect

different structure types, specified by the union structure,

to a common structure, i.e., unions are also referred to as

variant records. Since the multi-lingual database system is

to support the mapping of multiple languages, many portions

of the user structure are the same for any language used.

However, the union construct allows for the parts that have

to change between language interfaces, so that the common

data structures may be adapted to be useful to all language

interfaces.

114

• " " " " " " ' " ' ' " " " " I ' " " " " " " " . .- . .' '" ' " -

APPENDIX A -SCHEMIATIC OF THE PILDS DATA STRUCTURES

The purpose of this appendix is to present a pictorial

of the data structures used in the DL/I language interface.

Since the code used for our thesis is the C programming

language, the diagrams make use of its constructs, just as

r.the code does. Groups of related items are known as

structures in C, and it is easy to see from the diagrams

that each structure breaks down into more detailed, workable

structures. There are two major parts of this appendix. In

Figure 23 we present the hierarchical database schema data

structures that are discussed in Chapter II. In Figure 24

we present the user data structures.

In the diagrams, an arrow indicates that the field is a

pointer to a structure. Each of the fields of such a

structure is preceded by a small arrow to indicate that,

indeed, a pointer from another structure is referencing the

field. An example of this is the di _ddl _files field of the

dli _info structure in Figure 24 on page 121. The field

di _ddl _files points to a structure of type ddl info. This

convention is especially useful when writing or tracing long

paths through the user data structure.

On the other hand, bracket lines are used to indicate

when the field of a structure is also a structure. The

bracket lines are drawn from the "parent" field to the

"child" structure. A period is placed in front of the

bracketed structure's fields to indicate this fact. An

113A

other interfaces. When these are complete, the system needs

to be tested as a whole to determine how efficient,

effective, and responsive it is to users' needs. The

results may be the impetus for a new direction in database

system research and development.

112

.*s-.-.-
.

providing an attribute-value pair to be changed during a

DL/I REPL call, and for building a new segment to be

inserted during a DL/I ISRT call, is resident in the host

language, not in the DL/I data language itself. In order to

make such an embedded language function interactively, we

have been forced to introduce additional syntax for the

language interface. This additional syntax does not

represent a change to the DL/I data language, but rather,

serves only to facilitate our interactive implementation of

the normally embedded data language, DL/I. The interface is

completely transparent to the DL/I user.

In retrospect, our level-by-level top-down approach to

designing the interface has been a fine choice. This

implementation methodology had been the most familiar to us

and proved to be relatively time efficient. In addition,

this approach permits follow-on programmers to easily

maintain and modify (when necessary) the code. Subsequent

programmers will know exactly where we stopped because we

made many of the lower-levels stubs. Hence, it is an easy

task to replace these stubs with code. This is an advantage

of this approach that we did not realize until completion of

our implementation.

We have shown that a DL/I interface may be implemented

as part of a MLDS. We have provided a software structure to

facilitate this interface, and we have developed the actual

code for implementation. The next step is to implement the

. .°

.. . . U . . . E

implementation of DL/I operations suc.i as: sequential

retrieval without SSAs, sequential retrieval without SSAs

within a parent, command codes F and V, and path retrieval

and path insertion (command code D). In addition, we have

developed a LIL that is virtually reusable. With minor

modifications the LIL may be used with the other language

interfaces. Our generic data structure design is also

noteworthy. Because of our extensive utilization of unions

(i.e., variant records), the other language interfaces may

use our generic data structures. We have extended the work

of Banerjee [Ref. 2) and Weishar [Ref. 3) by specifying and

implementing the algorithms for the language interface. In

addition, we have also provided a general organizational

description of the MLDS.

A major design goal has been to design a DL/I language

interface to MBDS without requiring that changes be made to

MBDS or ABDL. Our implementation is completely resident on

a host computer. All DL/I transactions are performed in the

DL/I interface. MBDS continues to receive and process

transactions written in the unaltered syntax of ABDL. In

addition, our implementation has not required any changes to

the syntax of DL/I. We are implementing DL/I in an

interactive language interface. However, DL/I is an

embedded database language that is invoked from a host

language (i.e., PL/I, COBOL, or System/370 Assembler

Language) by means of subroutine calls. The syntax for

110

"o . - ...,-lX .. .ft - ,.- -. -- f , . - , .- -f .- f-ft ft ft

VII. CONCLUSION

In this thesis, we have presented the specification and

implementation of a DL/I language interface. This is one of

four language interfaces that the multi-lingual database

system is to support. In other words, the multi-lingual

database system is to be able to execute transactions

written in four well-known and important data languages,

namely, DL/I, SQL, CODASYL, and Daplex. DL/I is, of course,

the well-known hierarchical data language provided by, for

example, the IBM Information Management System (1MS). In

our case, we support DL/I transactions with our language

interface by way of the LIL, KMS, KCC and KFS, in place of

1MB. A related thesi's by IKloepping and Mack [Ref. 19J

examines the specification and implementation of the SQL

interface. This work is part of ongoing research being

conducted at the Laboratory of Database Systems Research,

Naval Postgraduate School, Monterey, California.

The need to provide an alternative to the development of

separate stand-alone database systems for specific data

models has been the motivation for this research. In this

regard, we have shown how a software DL/I language interface

may be constructed. Specific contributions of this thesis

include the development of useful algorithms and the

109

.- .-.. .. . - - -. .

S**w. - - . -. - . . ~ - - -. -- -
. 4 . . . -•

attribute-value pairs into the results file. Before an

attribute name is stored into the results file, a check is

made to determine if this attribute matches the attribute

name of the segment sequence field. If the attribute names

match, an end-of-line marker is inserted in the results file

before the attribute-value pair is stored. Otherwise, the

attribute-value pair is stored without the end-of-line

marker. This check is one of the reasons that the KFS task

of formatting output is so easy for the DL/I language

interface.

C. THE KFS PROCESS

The KFS module is contained in the small procedure

dlikfs. The KFS is only called by the KC when the results

of a request are to be displayed to the user. The only Lask

that the KFS performs is to display to the screen the

attribute-value pair found on the current line in the

results file. A loop prints out this line, a character at a

time, until the end-of-line or end-of-file marker is

reached. The current position within the results file is

then incremented by one and control is returned to the KC.

108

."

°. , . > > > - . .. > .> > , > > -, > , > ? > > < . > i '. . > •. , .- . .

*1 t
-I . Zj .

40 V)

"I

4-
LI'

uJ

-IJ
'4

II. *-'

0II.
' '

-~ g~oI

.2: ~

C.

C
1~~

4
o
La.
2
-z

.1 .9.,

6

2

i
a

L... .)

. .

'I.

-' d 2
* - a,-'

(
C ~ .1

-AI I I
.3 .4 .4 0

.3 4
' 3 0
v'I y, '1 frI 1')

_ -?

N
N,.

~N..

N,
N

0
U. -I--'
2 .1

~

I .'~4.

wlvs Lr~U.t-(Lt±

r'sI

-LVNS - LrvS rt 0,Y-

3 S

Flire . I. otitinued

P.JEKZ- LISTS

atty

LL S

I I ij S

o qo

,~2 ~

I I I
I ~- .3 .1 *)

~v1 ~5
0 * *

C
'-4

o 0
U. .J -,

N

*

/

'-7
'-4--

S

L7

A

a?

~~~ 0 . ~ -

V,_o 40- a
I ~~~) .22 3 J*J'I

IL A



J -- -

S s u'si~

S~
Mu(=7 LE/

Sit',

vigure J4. :c) t i nuei



- - .~*......-

OIL)

2,
IL ~ .3

I I
J .3

Ii~L1 ~ 0 0

Y
o J I

w~

(AJ~2 ~
-~

I 2* "I

I J J

ui~
-~

0't 1.11
CXJ

*4.)

-4

0J

. . . . . .

.~ .* .*



APPENDIX B - THE LIL PROGRAM SPECIFICATIONS

module DLI-INTERFACE

db-list : list: /* list of existing relational schernas
head-db-list-ptr: ptr: ,* ptr to head of the relational schema list *
current-ptr: ptr; ptr to the current db schema in the list *
follow-ptr: ptr:- ptr to the previous db schema in the list
db-id : string- , string that identifies current db in use *

proc LANGUAGE-INTERFACE-LAYERO:
This proc allows the user to interface with the system.

. Input and output: user DLI requests

stop : int: boolean flag .

answer: char: " user answers to terminal prompts

perform DLI-INITO:
stop = 'false':
while (not stop) do

allow user choice of several processing operations *

print ("Enter type of operation desired");
print (" (I)- load new database"):
print (" (p) - process existing database");
print (" (x) - return to the to operating system");
read (answer):

case (answer) of
* user desires to load a new database *,

perform LOAD-NEWO;
p': /* user desires to process an existing database */

perform PROCESS-OLDO;
"x': user desires to exit to the operating system

database list must be saved back to a file
st ore-free-d b-list(head-db- list. db-list):
stop true
exit):

default: ' user did not select a valid choice from the menu
print ("Error - invalid operation selected"):
print ("Please pick again")*

end-case:

. return to main menu
end-while:

end-proc:

131

-i ITm'nm'inw~l, ,md llm~mlba'i......i.......i.i......i......- "..........................



proc DLI-INIT():

end-proc;

proc LOAD-NEW(;
This proc accomplishes the following:

* (1) determines if the new database name already exists. *

(2) adds a new header node to the list of schemas.
(3) determines the user input mode (file/terminal).
(4) reads the user input and forwards it to the parser. and
(5) calls the routine that builds the template/descriptor files /

answer: int: "* user answer to'terminal prompts
more-input: int: * boolean flag
proceed: int: boolean flag
stop : int; '* boolean flag

db-list-ptr: ptr - * pointer to the current database */

req-str: str; " single create in DLI forth *,,

ptr-abdl-list: ptr: ptr to a list of ABDL queries (nil for this proc)*
tfid. dfid: ptr; pointers to the template and descriptor files

'* prompt user for name of new database /

print ("Enter name of database");
readstr (db-id);
db-list-ptr = head-db-list-ptr:

stop = 'false';
while (not stop) do

determine if new database name already exists *;

by traversing list of relational db schemas
if (db-list-ptr.db-id = existing db) then

print ("Error - db name already exists"):
print ("Please reenter db name");

readstr (db-id):
db-list-ptr = head-db-list-ptr:

end-if:
else

if (db-list-ptr - 1 niP) then
stop true:

else
increment to next database

db-list-ptr db-list-ptr - 1:
end-else:

end-while:

132



/* continue - user input a valid 'new' database name

'* add new header node to the list of schemas and fill-in db name
/* append new header node to db-list */

create-new-db(d b-id);

the KMS takes the DLI defines and builds a new list of relations
for the new database. After all of the defines have been processed
the template and descriptor files are constructed by traversing

.. the new database definition (schema).

more-input = 'true';
while (more-input) do

* determine user's mode of input "/
print ("Enter mode of input desired"-);
print (" (f) - read in a group of defines from a file");
iOrint (" (x) - return to the main menu");
read (answer);

case (answer) of
'f: /* user input is from a file *

perform READ-TRANSACTION-FILE(:
perform DBD-TO- KMSo;
perform FREE-REQUESTS(;
perform BUILD-DDL-FILESO:
perform KERNEL-CONTROLLER);

'x': /* exit back to LIL */
more-input = 'false':

default: " user did not select a valid choice from the menu
print ("Error - invalid input mode selected");
print ("Please pick again");

end-case:
end-while;

end proc:

133

.-" .- ].-.............................................................................................-.......-...........-... .. ,



proc PROCESS-OLD(:
* This proc accomplishes the following:
* (1) determines if the database name already exists.

,'* (2) determines the user input mode (file'terminal).
(3) reads the user input and forwards it to the parser

answer: int: user answer to terminal prompts *
found: int, boolean flag to determine if db name is found
more-input: int: *' boolean flag to return user to LIL '
proceed: int; '* boolean flag to return user to mode menu
db-list-ptr: ptr; pointer to the current database
req-str: str: single query in DL1 form /
ptr-abdl-list: ptr: /* pointer to a list of queries in ABDL form
tfid. dfid: ptr: /'* pointers to the template and descriptor files *

prompt user for name of existing database */
print ("Enter name of database"):
readstr (db-id);
db-list-ptr = head-db-list-ptr:

found = 'false>:
while (not found) do

" determine if database name does exist
" by traversing list of hierarchical schemas *

if (db-id existing db) then
found = 'true':

end-if:
else

db-list-ptr = db-list-ptr
. error condition causes end of list('nil') to be reached *,

if (db-list-ptr = 'nil') then

print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id):
db-list-ptr head-db-list-ptr:

end-if:

end-else:

end-w hile:

134



continue - user input a valid existing database name
determine user's mode of input *

more-input = 'true;
while (more-input) do

print ("Enter mode of input desired");
print (" (f) - read in a group of DLI requests from a file"):

print (" (t) - read in a single DL /I request from the terminal"):

print (" (x) - return to the previous menu");

read (answer):

case (answer) of
'F: ' user input is from a file *

perform R EAD-TRANSACTION-FILE):
perform DLIREQS-TO-KMSo:
perform FREE-REQUESTSO

t*: -* user input is from the terminal *
perform READ-TERMINALO:
perform DLIREQS-TO-KMSO;
perform FREE-REQUESTS();

x' user wishes to return to LIL menu /
more-input = *false':

default: ' user did not select a valid choice from the menu /

print ("Error - invalid input mode selected");
print ("Please pick again"):

end -case:

end-while:

end-proc:

proc READ-TRA NSACTION-FILEO:
This routine opens a dbd request file and reads the transactions
into the transaction list. If open file fails, loop until valid

file entered

while (not open file) do
print ("Filenarri does not exist"):

print ("Please reenter a valid filename"):
readstr ( file):

end-,while:

READ-FILE():

end-proc:

135



constant-list COIN-MA constant
{
if (insert-attrs < 1)

alloc next insert-list item
end-if
if (literal-const)

convert-AlphaN umFirst('constant')
literal-const = FALSE

copy data-type = 's' to insert-list
end-if
else

copy data-type = 'i" to insert-list
end-else
copy *constant' to insert-list
insert-vals --}

E: empty
{
if (label)

print ("Warning - 'label-name' label defined, but not referenced")
end- if
}

GOTO H
{
goto-found = TRUE

if ( (! label) or ((label) and ('H' != 'label-name')
print ("Error - label for 'GOTO H' not defined")
perform yyerror()
return

end-if
if (op-flag != GnOp. or GnpOp. or lsrtOp)

print ("Error - loops used only w GN, GNP, or ISRT operations")
perform yverror()
return

end-if
if ( (! spec-ret-op) arid (single-build)

set loop-flag for use by KC
end-if
else if (! single-build)

print ("Error - loops cannot be used w multiple ISRT ops")
perform yyerror(
return

end-else-if

149



field-name-list: field-name

{
alloc and init insert-list node
alloc first insert-list item
copy 'field-name' to insert-list

insert-attrs -

field-name-list CONEMA field-name

{
alloc next insert-list item
copy 'field-name' to insert-list
insert-attrs

value-list: LPAR constant-list RPAR

inserting = FALSE
if (insert-attrs > 0)

if (insert-attrs != insert-vals)

print ("Error - too many, or not enough values inserted")
perform yverror()
return

end-if
end-if

constant-list: constant

if (insert-attrs < 1)
alloc first insert-list item

end-if
if (literal-const)

convert-A lphaN um First ('constant')
literal-const = FALSE
copy data-type = s' to insert-list

end-if
else

copy data-type = iT to insert-list
end-else
copy .constant' to insert-list
insert-vals -

148



else
print ("Error - seg-name must be specified if GN or GNP op")
perform yyerror()
return

end-else
end-if}

J: empty
H

{
label = TRUE
save label-name ('H') for later comparison with GOTO statement}

dli-operator: empty GU GN , GNP GHU GHN GHNP build-segs ISRT

{
set appropriate operator-flag}

build-segs: build-segment
{
build-count = build-count + 1
}

build-segs build-segment
{
build-count = build-count - 1
single-build = FALSE}

build-segment: BUILD I COLON
{
inserting = TRUE

}
value-list

I: empty

{
alloc and init insert-list node

LPAR field-name-list RPAR

147

. " " i lm ,: ,.. - - .: -' ' l-.i- a.--a . 'minail ii' m-a& l . . .- ' " " " " " .



4 - W I

if ((seq-fld-has-value) and (single-build)
delete last abdl-str present
(ie, seq-fld given, no retrieve request required)

end-if
alloc and init a new abdl-str
copy " INSERT (<TEMPLATE, segment-nare'>" to abdl-str
if (single-build)

for (each item in tgt-list)
concat ", <'seq-fld'. *..*>" to abdl-str

end-for
end-if
else

for (each node in the list of insert-lists)
concat ", <'first attr-name', 'first attr-value'>" to abdl-str

end-for
end-else

for (each item in insert-list)
concat ". <'attr-name*, 'attr-value'>" to abdl-str

end-for
concat ") " to abdl-str

end-for
end-if

if ( (! spec-ret-op) and (single-build)
for (all abdl-str(s), except the last one)

concat tgt-list and BY-clause to RETRIEVE reqs
(ie. "('tgt-list') BY 'seq-fld' i" )
if (operator-flag = ISRT) and (cmd-code = StarD)

retrieve all attr names and add to tgt-list
end-if

end-for

concat all attrs to last RETRIEVE request
concat ") BY "sequence-field" " to last RETRIEVE request

if (operator-flag = DLET)
form the descendant deletes to complete the DLET req

end-if
end-if

if (spec-ret-op)
if (operator-flag = GN)

form the descendant retrieves to complete the GN (no ssa) req
end-if
else if (operator-flag = GNP)

form retrieves for children to complete the CNP (no ssa) req

end-else-if

146

* -.- --. -- -- . .- -. .*. . - ..- , .- *-.. -. .. . . . . .-.. . . . . .. .". . .-: . . ".-. . . .. . -. ... .. . . .-. --' -. . -. . -. i



perform yyerror)
return

end-if
end-if
for (each node in the list of insert-lists)

if (! single-build)
re-establish the saved curr-seg-ptr and segment-name

end-if
if (insert-attrs < 1)

copy all segment attrs to insert-list and count insert-attrs
end-if
if (insert-attrs != insert-vals)

print ("Error - too many, or not enough values inserted")
perform yyerror()
return

end-if
for (each attribute in the curr-seg)

if (segment attribute missing from insert list)
add item to insert-list with default values
of "Zz' if type CHAR, and 'V' if type INT

end-if
else

if (insert-list item = seq-fld of curr-seg)
seq-fld-has-value = TRUE

if (! seq-fld-has-value)
print ("Error - seq-fld value req'd in ISRT op")
perform yyerror 0

return
end-if
if (! valid-attribute(curr-seg-ptr, field-name, &attr-len, &attr-type)

print ("Error - 'field-name' attr does not exist in 'segment-name segment")
perform yyerror()
return

end-if
if (insert-list data-type != attr-type)

print ("Error - 'field-name' attr must be type lattr-type"')
perform yyerror()
return

end-if
if (attr-len < strlen(insert-list value))

print ("Error - 'field-name" attr max length - 'attr-len"')
perform yyerror()
return

end-if
end-else

end-for

145

. . . ..
'.* * ~ . *. - - . .. .. . . . . . . .



C: empty
{
attr-node type = 's' ' default condition
}

TYPE EQ data-type COLMA

data-type: CHAR
{
attr-node type = 's'
}

INT

attr-node type = T
}

FLT
{
attr-node type = r
}

dml-statement: J ssa
{
if ((label) and (! goto-found) )

print ("Warning - 'label-name' label defined, but not referenced")
perform yyerror 0
return

end-if
if (operator-flag = ISRT)

if ( (single-build) and (star-d)
print ("Error - '*D' cmd code implies a multiple seg ISRT")
perform yyerror()
return

end-if
if ( (! single-build) and (! star-d)

print ("Error - '*D' cmd code req'd for mutiple seg ISRT")
perform yyerror()
return

end-if
if (! single-build)

if (build-count != ssa-count)
print ("Error - num of segs built not equal to num ssa's")

144

. .

. . .



field-spec: field-name

if ( valid-attribute(seg-ptr, field-name. &attr-len, &attr-type)
print ("Error - 'field-name' attr doubly defined in 'segment- name"')
perform yyerror()
return

end-if
else

copy field-name to attr-node
end-else
attr-node key-flag =0
attr-node multiple field = 0

}
COMMBA field-data
LPAR field-name

if ( valid-attribute(seg-ptr, field-name, &attr-len, attr-type)
print ("Error - 'field-name' attr doubly defined in 'segment- name"')
perform yyerror()
return

end-if
else

copy field-name to attr-node
end-else

COMCMA SEQ B RPAR COMMA field-data

attr-node key-flag I

B: empty

{
attr-node multiple field = 0

COMMA M
i
attr-node multiple field = I

field-data: C BYTES EQ INTEGER

attr-node length =INTEGER

143



A: empty

{
connect new segment-node to the dbid root-ptr
}

COMMA PARENT EQ segment-name
{
seg-ptr = the root segment of the db
if ( valid-parent(seg-ptr, segment-name. parent-ptr)

connect the new segment-node to the appropriate parent-node
establish curr-lst-child-ptr
parent-node num-child--
first-child and sibling node(s) num-sib--

end-if
else

print ("Error - 'segment-name' parent-node does not exist")
perform yyerror()
return

end-else

field-list: field-desc

connect new attr-node to segment-node
}

field-list field-desc
{
connect successive attr-node(s) to segment-node

field-desc: FIELD NAME EQ
{
allocate and init a new attr-node
segment-node num-attr--
}

field-spec

142



segment: SEGM NAME EQ

allocate and init a new segment-node
dbid-node num-seg--

segment-spec

segment-spec: segment-name

if (! valid-child(segment-name, curr-lst-child-ptr))
copy segment-name to current segment-node

end-if
else

print ("Error - 'segment-name' segment doubly defined in db't )
perform yyerrorO
return

end-else

A

141

.. ......... ...



%token /* List All Tokens From "LEX" and their TYPE, here

%start statement

statement: dm-statement
{
if (! spec-ret-op)

save last curr-seg-ptr
end-if
return

ddl-statement
?. {

return:-. }

ddl-statement: db-desc segment-list

db-desc: DBD

creating TRUE
curr-lst-child-ptr NULL
}

NAME EQ db-name

locate dbid schema header node
if (db names do not match)

print ("Error - given db-name doesn't match db-name in file")
perform yyerror()
return

end-if
sm }

segment-list: segment-desc
segmen t-list segment-desc

segment-desc: segment field-list

140

-* . - -- - - - - .-



boolean: creating /* signals a DBLoad vs a DBQuery
boolean: updating . signals a DLI update request
boolean: label signals DLI statement has a label * j

boolean: or-where * signals an OR term in SSA predicate *
boolean: and-where /' signals an AND term in SSA predicate
boolean: literal-const /* signals alpha constant vs integer constant *
boolean: inserting 7 signals ISRT operation */
boolean: not-marked /* label not marked for attachment of loop ptr>'
boolean: first-ssa '* signals working on 1st ssa of DLI request *

boolean: seq-fld-has-value /* the "value' of seq-fld is given in req
boolean: missing-root / missing root seg in ssa specif of DLI req /
boolean: goto-found GOTO found following last ssa in DLI req */
boolean: spec-ret-op /* special retrieve op (GN or GNP -- all segs)
boolean: single-build ,7 single segment to be built for ISRT op */

'boolean: star-d cmd code D used in DLI ISRT op
ptr: seg-ptr /* ptr to a schema segment
ptr: curr-seg-ptr ptr to current segment in schema /
ptr: prev-seg-ptr * ptr to previous segment in schema *

ptr: parent-ptr /* ptr to parent of current segment, in schema
ptr: curr-lst-child-ptr /* ptr to 1st child of curr parent in schema *
ptr: label-ptr /* ptr to abdl-str that corresponds to label */
int: attr-len ,/* length of current attribute */
int: insert-attrs /* number of attrs inserted during ISRT op *

int: insert-vals /* number of vals inserted during ISRT op *,
int: operator-flag /* dli-operator in DLI request */
int: addl-tgt-count /* count of add'l items added to tgt-list *

int: build-count '* count of number of segments built for ISRT op *
int: ssa-count count of the number of ssa's in multiple ISRT *

char: cmd-code /* command codes 'D', 'F, or 'V' */
char: attr-type 's'=CHAR, i'=INT, 'fFLOAT, from schema
char: data-type /* same as attr-type., for an input 'value'
str: label-name
str: segment-name
str: field-name
str: abdl-str
str: temp-str
flag: loop-flag /* there's a GOTO 'label' loop in curr request
list: tgt-list * list of sequence field attribute names
list: insert-list * list of attribute-value pairs for IS RT op
list: insert-nodes . list of insert-list(s) for multiple lSRT op

%13}

... 139

_ - . L., a .,u.._ ._, r.;d~ ,IdXh Mm- t lnlm.. .. . . . . . . . . . . . . . . . .. .... . . . . . .



APPENDIX C - THE KMS PROGRAM SPECIFICATIONS

proc kernel-mapping-system ()
perform parser()
perform match()

end-proc kernel-mapping-system

proc parser()
if (operation != CreateDB, vice work with existing DB)

alloc and init initial kms data structures
access and save length of dii request ,
free any existing abdl-str(s) from a previous parse

end-if

initialize the input request ptr
perform yyparse()
reset all booleans and counter variables

if (operation != CreateDB)
free all kms-unique data structures

end-if
end-proc parser

proc yyparse ()

* This procedure accomplishes the following
* (1) parses the DLI input requests and maps them to appropriate *7

abdl requests, using LEX and YACC to build proc yyparse(. */

/* (2) builds the hierarchical schema. when loading a new db. */
/* (3) checks for validity of segment and attribute names within

the given db schema, when processing requests against an *

existing db. *1

138

.7. .



proc DLJREQS-TO-KMSO)
/' This routine causes the DLJI requests to be listed to the screen.
7 The selection menu is then displayed allowing any of the
,* DL/i requests to be executed.

perform LIST-DL!REQS);
proceed = 'true':
while (proceed) do

print ("Pick the number or letter of the action desired"):
print (" (num) - execute one of the preceding DL/I requests"):
print (" (d) - redisplay the file of DL/I requests");
print (" (r) - reset currency pointer to the root"):
print (" (x) - return to the previous menu");
read (answer);

ease (answer) of
'num' : ,'* execute one of the requests */

traverse query list to correct query;
perform KERNAL-MAPPING-SYSTEM(;
perform KERNEL-CONTROLLERO;

V :/* redisplay requests
perform LIST-DLIREQSO;

r" : /* reset currency ptr to the root *,'

perform CURR-PTR-TO-ROOTO:

x : exit to mode menu 4,

proceed = 'false':

default : user did not select a valid choice from the menu
print (" Error - invalid option selected");

print (" Please pick again"):
end-case;

end-while;

end-proc:

137



proc READ-FILEO;

*This routine reads transactions from either a file or the

terminal into the user's request list structure so that
/* each request may be sent to the KERNEL-MAPPING-SYSTEM.

end-proc:

proc READ-TERMINAL);
This routine substitutes the STDIN filename for the read /
command so that input may be intercepted from the terminal *,

end-proc:

pro6 DBD-TO-KMS(;
I* This routine sends the request list, of database descriptions *1

/'* one by one to the KERNAL-MAPPING-SYSTEM

while (more-dbds) do
KERN AL-MAPPING-SYSTEMO;

end-w hile;

end-proc:

136

-.-- A.*..-. -. e 4 5.t .. J . . . . . . . . . . .



NFGOTO H

goto-found =TRUE

if ( (! label) or ( (label) and ('H' 'label-name')
print ("Error - label for 'NFGOTO H' not defined")
perform yyerror()
return

end-if
if (op-flag != GnOp. or GnpOp. or srt~p)

print ("Error - loops used only w/ GN. GNP. or ISRT operations")
perform yyerror()
return

end-if
if ( !spec-ret-op) and (single-build)

set loop-flag for use by KG
end-if

else if (! single-build)
print ("Error - loops cannot be used w/ multiple ISRT ops")
perform yyerror()
return

end-else-if

K: empty
dli-op

dli-op: DLET

if (not preceeded by a GET HOLD operation)
print ("Error - DLET must be preceeded by GHU. GHN. or GHNP")
perform yyerror()
return

end-if
else

op-flag =DLET
alloc and init a new abdl-str
'" formulate the first DELETE request

copy "DELETE ((TEMPLATE = segmen t- name')" to abdl-str
for (ea item in the tgt-list)

concat "and ('item-name' t .7) o abdl-str
end- for
concat ")"to abdl-str

end-else

150



chg-pred REPL
• : {

if (not preceeded by a GET HOLD operation)
print ("Error - REPL must be preceeded by GHU. GHN. or GHNP")
perform yyerror()
return

end-if
else

op-flag = REPL

end-else
: }

chg-pred: CHANGE
{
updating = TRUE
}

field-name TO constant
{
updating = FALSE
if (! valid-attribute(curr-seg-ptr, field-name, &attr-len, &attr-type) )

print ("Error - 'field-name' attr does not exist in 'segment-name' segment")
perform yyerror()
return

end-if
if (literal-const)

convert-AiphaN umFirst ('constant')
literal-const = FALSE
data-type = Is*

end-if
else

data-type = T,
end-else
if (data-type != attr-type)

print ("Error - 'field-name' attr must be type 'attr-type"')
perform yyerror()
return

end-if
if (attr-len < strlen(Iconstant'))

print, ("Error - 'field-name' attr max length = 'attr-len"')
perform yyerror()
return

end-if

151

- .,--- . .. -.- :.. . .-- -.. .-.-. .., . .. .... ... . -.-..... . . . . ...........:.



alloc and init a new abdl-str
copy "I UPDATE ((TEMPLATE = 'segment-name')" to abdl-str
for (each item in tgt-list)

concat " and ('seq-fld' = ***...***)" to abdl-str
end-for
concat ") <'field-name' = 'constant'> J" to abdl-str}

ssa: seg-srch-arg{
ssa-count = ssa-count + I
prev-seg-ptr = curr-seg-ptr
if ( (operator-flag = ISRT) and (I single-build)

save the curr-seg-ptr and segment-name in first insert-list node
end-if
first-ssa = FALSE
}

ssa seg-srch-arg
{
ssa-count = ssa-count 4- 1
if (the parent of the curr-seg-ptr = prev-seg-ptr)

prev-seg-ptr = curr-seg-ptr
end-if
else

print ("Error - SSA specifies incorrect hierarchical path")
perform yyerror()
return

end-else
if ( (operator-flag = ISRT) and (!single-build)

save the curr-seg-ptr and segment-name in first insert-list node
end-if

~}

seg-srch-arg: dli-operator segment-name
," . {

seg-ptr = the root segment of the db
if (! valid-parent(seg-ptr. 'segment-name', curr-seg-ptr) )

print ("Error - 'segment-name' segment does not exist")
perform yverror()
return

end-if
if ( (operator-flag != ISRT) or (single-build)

alloc and init a new abdl-str and a new tgt-list item
copy "' RETRIEVE (" to abdl-str
copy segment sequence field and length to tgt-list

end-if

152



if (label) and (not-marked)
not-marke i = FALSE
label-ptr = current abdi-str

end- if
if ( (first-ssa) or (missing-root)

if (curr-seg-ptr = root of the db)
insert seq-fld(s) to tgt-list for all parents/ grandparents
addl-tgt-cou nt = number inserted
missing-root = TRUE

end-if
end-if
save 'segment-name' for later use

L G

delete first 'addl-tgt-count' items from tgt-list
addl-tgt-count = 0
if (single-build)

concat ")"to abdl-str
end- if

E K

dli-operator

spec-ret-op =TRUE:

E K

L: empty
ASTERISK N

N: D F V

set cmd-code to appropriate code (Staff, or Star\T )
if (N is D)

star-d = TRUE
if (singi-build)

set cmd-code to StarD)
end -if

end- if

153



G: empty

if (!single-build)
do nothing

end-if
else

if (curr-seg-ptr =root of the db)
concat "TEMPLATE semn-ae"to abdl-str

- - end-if

else
concat "(TEMPLATE = segment-namne )" to abdl-str
for (ea item in tgt-list)

concat " and ('itemn-nam&= ****)t to abdl-str

end-for
end-else

end-else

LPAR boolean RPAR

if (or-where)
concat ")" to abdl-str
or-where =FALSE

end- if

boolean: boolean-terrn

concat "(TEMPLATE 'segment-namne') and "to abdl-str
form symbolic id predicates :"('seq-fld' - *.**)~from igi-list,

for all previous segments, and concat them to the abdi-sir. each one
separated by " and ".

concat temp-sir to abdi-sir

boolean OR

or-where = TRUE

concat ") or ((TEMIPLATE ' segmeni-name') and "to abdl-str
copy 'empty sir' to temp-str

boolean-term

form symbolic id predicates :"(*seq-d'-*..*)t from igi-ii
for all previous segments, and concat them to the abdi-sir, each one
separated by " and "

concat temp-sir to abdi-sir

154



boolean-term: boolean-factor
boolean-term AND

and-where = TRUE
concat " and "to temp-str

boolean-f act or

boolean-factor: predicate

predicate: field-name

if (! valid-attribute(curr-seg-ptr, field-name, &attr-len, &attr-type))
print ("Error - 'field-name' attr does not exist in 'segment-name' segment")
perform yyerror()
return

end-if
else

if ( !and-where) and (!or-where)
alloc temp-str
copy "(" to temp-str

end-if
else

PPT concat IT' to temp-str
end-else
concat 'field-name' to temp-str
save 'field-name' for later use
and-where =FALSE

end-else

comparison

concat " 'comparison' "to temp-str

constant

if (literal-const)
con vert- AlphaN umF irst ('constant')
literal-const = FALSE

end-if
concat "constant)" to temp-str



comparison: EQ NE LT LE GT GE

constant: QUOTE H~ QUOTE

literal-const = TRUE
if ( (! inserting) and (! updating)

if (attr-type != *s')
print ("Error - 'field-name' attr must be type INT")
perform yyerror()
return

end-if
if (attr-len < strlen('H'))

print ("Error - 'field-name'-attr max length ='attr-len"')

perform yyerror()
return

end-if
end-if

I
INTEGER
{
if ( !inserting) and (! updating)

if (attr-type != 'i')
print ("Error - 'field-name' attr must be type CHAR")
perform yverror()
return

end-if
if (attr-len < strlen('INTEGER'))

print ("Error - 'field-name' attr max length = attr-len"')
perform yyerror()
return

end-if
end- if

H: IDENTIFIER
VALUE

db-name: IDENTIFIER

segment-name: IDENTIFIER

field-name: IDENTIFIER

156



empty:

end-proc yyparse

proc yyerror(s)
char s

if (operation = CreateDB)
set error flag for the LIL
print ("Error - DBD Description file for 'curr-seg' in error")
free all the rmalloc'd variables in the current schema

end-if
else

set error flag for the LIL
free all the malloc'd variables in the kms data structures

end-else

reset all boolean and counter variables
print (s)

end-proc yyerror

157

• "* " ° " " % .' % °- . J a% .
%

'- % . - '° '° .'".' .% .°" .% ' ' .% b
"

' a 
°
- " - k 

•
' ' * •* ° %" % % •"- • ' - "• " -"" . • • 

°
" - ' -"" " ° " - " • " -



proc MATCH()
*This routine checks the operator flag for the incoming ~

/~transaction and branches to the appropriate DL/l operation L

kms-list :list;
sit-list :list;
status-list :list;
head -kms-list-ptr :ptr;
head-sit-list-ptr :ptr;
status-ptr :ptr;
sit-ptr :ptr;
first-status-n ode-ptr ptr:
curr-status-node-ptr ptr:

/'*..the kms list cannot be null ~
if (kms-list <> 'null')

case (kms-list. operation)
"GhuOp" /* Get hold unique operator *

perform GET-HOLD-UNIQUEO;

"lsrtOp" 11* Insert operator */
perform INSERTO;

"GuOp" /* Get Unique operator/
perform GET-UNLQUEO;

"GnOp" /* Get Next operator */
perform GET-NEXTO;

"SpecRetOp" : / Special Retrieve operator *

perform SPEClAL-RETRlEVEO;

"GnpOp" /* Get Next Within Parent operator ~
perform GET-NEXT-PARENT():

end -case-

end -proc:

158



proc GET-HOLD-UNIQUE()
/* A GHU opration allows one user exclusive access to the database
/* so that subsequent deletes or replaces will occur before any */
/* further users can access the database.

diet-flag : int; /* boolean flag to tell if found a DELETE op */
done : int; * boolean flag

if (sit-list <> 'null')
print ("Error - sit-list is not null as required for GhuOp");

else
/' When a GHU is found, the type of operation must be identified. */

* The kms list is scanned looking for a delete operator. If found, */

a status node is created and set to point to the first node of */
,* the kms list (the GHU). A second status node is created and set */
", to the kms node that has the beginning-of-request delete flag "7
/* set. If the delete operator is not found, this indicates a

," replace operation or a list with nothing but GHU's. In this case *7
a status node is created and set to point to the first node of *7

/* the kms list (the GHU). */

done = 'false';

diet-flag = 'false';
sit-ptr = kms-list + 1;

/ walk down sit list until find DELETE operator or empty list *7
while (sit-ptr < > 'null' OR not done)

if (sit-ptr.operation = DletOp)
/. case of DELETE operation *
if (fisrst-status-list-ptr = 'null')

1* case of status list being empty *
allocate a new status node;
first-status-list-ptr = new status node;
curr-status-list-ptr = new status node;
status-ptr = head-kms-list-ptr;
allocate a new status node:
append status node to the status list;
status-ptr = sit-ptr:

end- if:
else

print ("Error - status list not null as required for GhuOp"):
end-else:
dlet-flag = 'true':
done = 'true';

end-if:
sit-ptr = sit-ptr 1:

end-while:

159



if (dlet-flag = 'false')
/* case that no DELETE operators were found in sit list; this */

/'* indicates that we have REPLACE operations or just GHU'S */
allocate a new status node;
first-status-node-ptr = new status node;
curr-status-node-ptr = new status node:
status-ptr = head-kms-list-ptr:

end-if:

set sit list ptr to heading of the kms list and null out kms ptr *.
head-sit.-iist-ptr = head-kms-list;
head-kms-list = 'null':

end-else;

end.proc;

proc INSERT()
/* An insert operation is used to add a new segment, "node" */

/* to the database.

first-bor : int: ... boolean flag set when beginning-of-req found *

An insert operation can only access the database from the root.
As long as the sit list is null, then we know that the currency
pointer is pointing to the root.

if (sit-list < > 'null')
printf("Error - sit list not null as required for IsrtOp");

else
set sit ptr to the head of the krns list /

sit-ptr = head-kms-list-ptr;
first-bor TRUE;

160

7e lmO



walk down the kms list until it is empty
while (sit-ptr <> 'null')

When an insert is detected, the kms list is scanned and a
status node is created and set to point to each kms node
that contains a beginning-of-request flag. The kms list *
is then transferred to the sit list before exiting.

if (sit-ptr.BOR = 'true')
allocate a new status node:
if (first-bor = 'true')

- case of the status node being the first on the list *;

first-status-node-ptr = new status node:

curr-status-node-ptr = new status node;
first-bor = 'false':

end-if;
else

append the status node onto status list;
end-else;

/* fill in the status node's contents
status-ptr = sit-ptr;

end-if:

sit-ptr = sit-ptr -- 1:
end-while;

/* set sit list ptr to head of the kms list and null out kms ptr */
head-sit-list-ptr = head- kms-list-ptr;
head-kms-list-ptr 'null':

end-else:

end-proc:

161

.. . .. . .. .. '-- . .. " -.. -. " -. ' . " " "'-' - ." "" " .'''''_-:- : % 'L "r -



proc GET-UNIQUE()
A GU operation is used to access the database from the

* root of the database. */

A GU operation can only access the database from the root.
As long as the sit list is null, then we know that the
currenc., pointer is pointing to the root.

if (sit-list < > 'null')
print ("Error - sit-list not null as required for GuOp");

else
if (first-status-node-ptr = 'null')

When a legitimate GU is found, we are sure that the >'
the currency of the request is correct. In this case
we simply transfer the sit list for the GU from the *

kms list to the sit list and create a single status *"
node that points to the first request of the GU. /

allocate a status node *
allocate a new status node:

I set head of the status list to the allocated node "
first-status-node-ptr = new status node:
curr-status-node-ptr = new status node:

fill in the contents of the allocated node *
status-ptr = head-kms-list-ptr:

* set sit list ptr to heading of the kms list and null out kms ptr *,'
head-sit-list-ptr = head-kms-list-ptr:
head-kms-list-ptr = null':

end-if;
else

print ("Error - status list not null as required for GuOp"):
end-else:

end-else:

end-proc:

162

m ,..mm m ., , -- d~m nm' m lammamb.- . 'gm. 'm ." ' : . .. . -. .. "



proc GET-NEXT()
,'* A GN operation is used to access the next lower level of the

database. It is used only after a GU operation has established *
a currency ptr to a specific level of the database. *

found, done; boolean flags *'

prev-kms-ptr: ptr to the previous node on kms list *
prev-sit-ptr: ptr to the previous node on sit list

if (head-sit-list-ptr = 'null')
with the sit list beint null. a GN is the same as a GU if the name

of first node of the kms list is the same as the root segment
if (head-kms-list-ptr.seg-name = root' segment name)

perform GET-UNIQUE(;
end-if;
else

print ("Error - currency pointer must be set to the root"):
print (" or specify complete path"),

end -else:

else
if (first-status-node-ptr = 'null')

print ("Error - status list null for GnOp"):
end-if:
else

When a valid GN is found, we know the segment that we want is
the next occurrance of a legitimate child or the segment the
currency pointer points to. If the segment is a child then we
create a status node pointing to the first node of the kms list. /
By being a child we guarantee ourselves that part of the kms */
list matches some of the sit list so the status field of the /

allocated status node is set to MATCHPART. If the segment is not *;
a child but the current segment, the amount of overlap between */

the sit list and the kms list must be checked. The parent pointer'
of the first kms node is set to the node above the node that it *,
matches in the sit list. A status node is created pointing to the*'
first node of the kms list. The kms and sit lists are then
checked to see how much overlap they contain. The status field
is set to MATCHPART or MATCHALL as appropriate.

dli-ptr- -di-saved-seg-ptr2- - hn-first-child-> hn-name):
if (head-kms-list-ptr.seg-name is a valid child of the node

currently pointed to by the currency pointer)
segment we want the next of is a child of the current segment'

status-ptr head-status-node-ptr:

163

-2. .: -- -- - .::':: . -. '-- .: . .: . - .: .- .. :: ) -.. -' . .. . . : :' .% :: .i . -'-- :) ': -:,



do-next-retrieveo(

, This procedure accomplishes the following:
, (1) Sets the kc-curr-pos to the next SIT. *

, (2) Calls build-req~est() and then executes
the complete abdl request.

kc-curr- pos = kc-cu rr-pos-> Si-next:
build-req uesto:

dli-xecute:

This procedure accomplishes the following:
(1) Sends the request to MBDS using
TI-S$TrafUnit() which is defined in the Test *
Interface.

(2) Calls dli-chk -requests-Ileft() to ensure
that all requests have been received.

T I-S $TrafUnit (kc- curr-pos- > S i-template):
dli-chk-requests-left():

177



put just obtained value into hfi-curr-buff-val;
put hfi-curr-buff-val into Si-template;

skip over the asteriks we just filled with a value;

If the "tor"t flag is set TRUE by the KMS, then there are
places in the abdl-request where we should not move up
the hierarchy to continue building the request. In >

Sother words, we need to continue using the same value.
if (kc-curr-pos->Si-or == TRUE)

if (firstime == TRUE)

firstime = FALSE:
or-ptr = par-ptr:

A:while (an ASTERIK or rY has not been detected in Si-abdl-req)

fill Si-template with Si-abdl-req:

if (kc-curr-pos->Si-abdl-reqi' == Yr)

t
if (an oW followed by a ''is detected in Si-abdl-req)

par-ptr =or-ptr;
else

continue filling Si-template with Si-abdl-req;,
goto A;

else
par-ptr = par-ptr->Si-parent:,

else
par-ptr =par-ptr->Si-parent:

176

-7*- . ~ . .



+,..-, S .-' - . . - ,- .-.- x,. + .. . .- -. * n ,, a . , -. .-+,+ . -+ - + - +,, . _ . .. . .

build-request()

This procedure accomplishes the following: */
'* Builds an abdl request in the Si-template *,'

pointed to by the kc-curr-pos. This procedure *

* works from the back of the Si-abdl-req in
"* building the request.

int i.

j.
k.
t'

z;

struct Sit-info *par-ptr,
or-ptr;

char c;
int firstime;

i = j = string length of(kc-curr-pos->Si-abdl-req);
par-ptr = kc-cu rr-pos-> Si-parent;
kc-curr-pos- > Si-template = NULL:
allocate enough space for kc-curr-pos->Si-template;
firstime = TRUE;

/* Working backwards in Si-abdl-req */
while (i >= 0)

{
fill Si-template with contents of Si-abdl-req 'til an '*' is hit;

If there is no value in the previous hfi-curr-buff-val,
then one must be fethced so that the request can be built */

if ((par-ptr-> Si-result-file-> hfi-curr-buff-val == NULL) &&
(par-ptr != NULL))

{
z =I

/* Determine how large this value will be

z i -z:

using this value allocate space for it;
fetch a value from the result buffer;
put this value in hfi-curr-buff-val:
if c =' * '. then need to read to EOL so that file ptr

will be correct location when next value is fetched:

place a at end of template;

175

. ... . . . . . -... . . .......................-.........-....... "... .'.-............... -- '



'~This case is where the EOR of the current request does not
match with the EOR of the previous query.

case MATCHPART:
build-request();
dli-executeo;
if (results- are- not- returned)

retract-a-level();
break;

while ((kc-curr-pos->Si-EOR != TRUE) &&(!FAILURE))

do-next-retrieveo;
if (results-are-not-returned)

retract-a-levelQ);

if (FAILURE)
{

return( FAILURE);

If the loop pointer is set, then we need to perform
loop-handlero. */

if (kc-cu rr-pos- >Si- loop != NULL)

,/* If the loop point4er is also the EOR. then all we do
is empty this buffer of its results */

if (kc-curr-pos-> Si-loop-> Si-EOR = TRUE)
while (kc-curr-pos-> Si-result-file-> hfi-buff-loc <=

kc-curr- pos-> Si-result-file-> hfi-count)
dl i-kfso:

else

temp-ptr = kc-curr-pos->Si-loop->Si-next:
while (temp-ptr != NULL)

temp-ptr-: Si-result-file-> hfl-status = RETRACTTIME;
fclose(temp--ptr- - Si-result-file- hfi-buff.fi-fid);
temp-ptr =temp-ptr- Si-next:

loop- hand ler( kc-cu rr- pos- Nloop-- Si-nex t);

if (FAILURE)
return ( FAIL U RE)

174



GU-proc()

/* This procedure accomplishes the following:
/* Establishes a current position in the DB *

/* by calling dli-executeo, do-next-retrieve(, */

and retract-a-level() so that the proper
results can be returned. When the results are
returned. dli-kfs() is called so that they * '
may be displayed.

{
char *var-str-alloco;
struct Sit-info 'temp-ptr:

If the kc-curr-pos is also the di-fst-sit-pos. then
we copy the Si-abdl-req over to Si-template (since
it is fully formed) and then call dli-executeo. */

if (kc-curr-pos == kc-ptr->di-fst-sit-pos->Ssi-req-pos)
{

allocate enough space for Si-template:
strcpy ( kc-curr-pos- > Si-template.kc-cu rr-pos-> Si-abd l-req);
dli-executeo;
if (results-are-not-returned)

retract-a-level():
}

Else this is a subsequent DLI query. Hence, we need to know
where we are in the hierarchy of the DB. The MATCH procedure
will tell me this and I therefore use a flag it sets to base
my next actions. *

else

switch (kc-ptr- >di-curr-sit-pos-> Ssi-status)

This case is when the EOR of the last query is the
same as the EOR of the current query. *

case MATCHALL:
• If there is only I value in the buffer, then
I need to get another value if there is one.

if (kc-curr-pos-> Si-result-file-> hfi-buff-loc
kc-curr- pos-> Si-resu lt-file-> hfi-count)

retract-a-level():
else

dli-kfs(:
break:

173



/* Else I just move the buffer file pointer to
the next value so that a new current position
in the DB is established. */

else
{

move file pointer;
}

break;

This case is where the EOR of the current request does not
match with the EOR of the previous query. *

case MATCHPART:
buiid-request();
dli-execute(;
if (results-are-not-returned)

retract-a-level();
break;

}
I

"' Until I hit the EOR or there is a failure, keep processing the
abdl queries. */

while ((kc-curr-pos->Si-EOR != TRUE) && (!FAILURE))
{

do-next-retrieveo;
if (results-are-not-returned)

retract-a-level ();
}

if (FAILURE)
{

return( FAILURE);

}

172



GHU-proc()

/* This procedure accomplishes the following: .,
/* Establishes a current position in the DB *
/* by calling dli-execute(, do-next-retrieveo, *

/* and retract-a-level() so that the proper
/* results can be returned.

{
char *var-str-alloco)
int i:

1* If the kc-curr-pos is also the di-fst-sit-pos, then
we copy the Si-abdl-req over to Si-template (since
it is fully formed) and then call dli-execute). *7

if (kc-curr-pos == kc-ptr- > di-fst-sit-pos- >Ssi-req-pos)
{

i = strlen(kc-curr-pos- >Si-abdl-req);

allocate enough space for Si-template;
strcpy (kc-curr- pos-> Si-template.kc-cu rr-pos-> Si-abdl-req);
dli-execute():
if (results-are- not- returned)

retract-a-level():
}

Else this is a subsequent DLI query. Hence. we need to know
where we are in the hierarchy of the DB. The MATCH procedure
will tell me this and I therefore use a flag it sets to base
my next actions. * //

else
{

switch (kc-ptr- >di-curr-sit-pos-> Ssi-status){
// This case is when the EOR of the last query is the

same as the EOR of the current query.
case MATCHALL:

If there is only I value in the buffer, then
I need to get another value if there is one.

if (kc-curr-pos-> Si-result-file->hfi-count <= 1)
retract-a-level():

171



dli-action 0
'~This procedure accomplises the following:

/* Uses a case statement based on the
operation to determine the correct proc. to*

/* call.

switch (kc-cu rr-pos- > Si-operation)

case GuOp:
case GnOp:
case Gnp~p:

GU-proco;
break;

case Ghu~p:
case Ghn~p:
case Ghnp~p:

GHU-proco;
break:

case lsrt~p:
G U-proc(),
break:

case Dlet~p:
Delete-proc( kc-curr- pos):
printf("Dlet operation complete");
break;

case Repl~p:
GU-proco:
break:

case SpecRet~p:
Spec-ret-proc( kc-curr-pos):
pri ntf( "S pecRet operation complete"):
break:,

if (FAILURE)
printf("Operatiori could not be completed due to ERROR !!)

170



I

APPENDIX D- THE KC PROGRAM SPECIFICATIONS

odli-kc0

j* This procedure accomplishes the following: >'

,* (1) Checks Si-operation to determine whether
we are creating a DB or querying the DB.

/ (2) Depending on the si-operation the cor-
,/ responding procedure is called.

int c;

initialize kc-curr-pos;
initialize kc-ptr;

switch (kc-curr-pos-> Si-operation)
{

1 case CreateDB:
load-tableso;
break:

case ExecRetReq:
requests-handler();

E break:

default:
printf("Error !!!!!!!");
break:

requests-handler()

This procedure accomplishes the following:
Calls dli-action until all DLI queries are
processed.

while (kc-curr-pos != NULL)
{

dli-action(:
get next Sit-info node to work on;
set kc-curr-pos equal to this node:

}

169

...S ,. . .-. . o ,. . ,. . . . . . ' ' .* - . . . ,.-..o,, .. ,. • .-. - . .' -, .- ...-.

" " " Q ~ l ' d ' t d i ~ l i ' l ' " l l " ' " a M ' bn b ~ d " - - " { - - ' 
' -

' ' " " ' ' ' " " "i " " " t 
"



L......

/*walk down to the end of the status list
status-ptr = First-stat us- nod e-ptr;
while (status- ptr.next < > 'null)
status-ptr = status-ptr -- 1

allocate a new status node:
status-ptr = head- k ms- list- ptr:
append the status node to the status list;

*append the kms list to the end of the sit list

sit-ptr.next = head- kms- list- ptr;
head- kms-l ist-ptr ' null';

end-else:

end-else:

end-proc;

168



append the kms list to the end of the sit list *

sit-ptr.next = head-kms-list-ptr;
head-kms-list-ptr = 'null';

end-else;

end-proc;

proc GET-NEXT-PARENT()
,* A GNP operation is used to access the database just below the
!* current node the currency pointer is pointing to, rather than *
/* having to specify the access path from the root as in a GU. *

if (head-kms-list-ptr.cmd-code < > 'StarF')

perform GET-NEXTO;
endi-if:
else
/' Once a valid GNP operation has been detected, we are sure the *
/* currency pointer is set to a segment (node) somewhere in the *

',* hierarchy with legitimate children beneath it. We then take the *

/ parent pointer of the first node of the kms list and set it to *
the next to last node of the sit list. A status node is then "

/* created and set to point to the first node of the kms list. '

/* Finally. the kms list is appended to the sit list.

/* walk down to the end of the sit list *7
sit-ptr = head-sit-list-ptr;
while (sit-ptr.next <> 'null')

sit-ptr = sit-ptr -+- 1;

/* check to see if the head of the kms list is a valid child of the *,
/* next to last node of the sit list */

if (head-kms-list-ptr.seg-name is not a valid child of the
next to last node in the sit list)

print ("Error - valid child not found");
end -if;
else

since it is a valid child, set the parent pointer of the first *

node of the kms list to the next to last node of the sit list *

head-k ms-list-ptr.paren t = sit-ptr.prev:

167

. .... . ....... . .- .... .. ...... ....



head-kms-list-ptr = 'null';
end-else;

end-else;

end-else:

end-else;

end-proc:

proc SPECIAL-RETRIEVE()
When a GN or GNP operation has been selected without any segment *

/* search arguments specified, the normal GN or GNP operation of *7
returning the next segment occurrance is skipped. Instead we

/* consider this a special retrieve to return all segment occurrances *,
'* below the segment the currency pointer is pointing to.

if (head-sit-list-ptr = 'null')
print ("Error - status list null for SpecRetOp");

end-if;
else

/* walk down to the end of the status list *

status-ptr = first-status-node-ptr:
while (status-ptr.next <> 'null')

status-ptr = status-ptr - 1;

allocate a new status node;
status-ptr = head-kms-list-ptr;
append status node to the status list;

/* walk down to the end of the sit list - the last node *,/

'/ represents the current segment */
sit-ptr = head-sit-list-ptr;
while (sit-ptr.next < > 'null')

sit-ptr = sit-ptr - I:

/* any nodes in the kms list with parent pointer = null *'
/* must have the parent pointer set to the current segment
kms-ptr = head-kms-list-ptr:
while (kms-ptr - null')

if (kms-ptr.parent = 'null')
kms-ptr.parent = sit-ptr:

end-if:
kms-ptr = kms-ptr - 1;

- end-while:

166

::. . .



[i . . . . . . ,,, ,.'.

allocate a new status node:
append the status node to the status list:
kms-ptr = head-kms-list-ptr;
prev-kms-ptr = kms-ptr;
prev-sit-ptr = sit-ptr;
done = 'false';
while (not done)

/ now we walk down the kms and sit lists to see hoN ,
* much overlap the sit list contains

free (kms-ptr.result-file);
kms-ptr.result-file = sit-ptr.result-file:
kms-ptr = kms-ptr - 1;
sit-ptr = sit-ptr + 1;
if (kms-ptr = 'null' OR sit-ptr = 'null')

done = 'true';
end-if;
else

/ both lists still contain nodes so increment them */
prev-sit-ptr = sit-ptr:
prev-kms-ptr = kms-ptr;

end-else:
end-while:

if (kms-ptr = 'null')

* case where sit list contained all of kms list *I/

status-ptr = prev-kms-ptr;
status-ptr.status = MATCHALL;

end- if:
else

case where sit list contained part of the kms list i
status-ptr = kms-ptr;
status-ptr.status = MATCHPART;

end-else:

now append kms list to the end of the sit list *

if (sit-ptr = 'null')
prev-sit-ptr.next = head-kms-list-ptr:

end-if:
else

while (sit-ptr.next <> 'null')
sit-ptr = sit-ptr + 1:

sit-ptr.next = head-kms-list-ptr:
end-else:

165

k-f:.-.--:.-:-- .- :..-.-.-:-:---. :-.-.°-.-: - - ...-. :- -:-. --- U -:,:... - .-.-....-- . . . . . . ..... -. .. . :... -.- .:



/~walk down to the end of the status list
while (status-p tr. next <> 'null')

status-ptr - status-ptr - 1;
allocate a new status node;
status-ptr = head-kms-list;
status-ptr.status =MATGHPART;

append status node to the status list;

walk down to the end of the sit list ~
sit-ptr = head- si t-list-ptr;
while (sit-ptr.next < > 'null')

sit-ptr = sit-ptr -r 1:

append the kms list to the end-of the sit list
sit-ptr.next =head-kms-list-ptr;
head-kms-list-ptr = 'null';

end- if:
else

/* check to see where first node in kms list overlaps sit list.
!* i.e., if the node is a descendent of the current node
found = 'false;

/* set pointer to the head of the sit list *
sit-ptr = head- sit-list- ptr:
while (sit-ptr < > 'null' AND not found)

if (sit-ptr.seg-name = head -kms- list- ptr.seg- name)
found TRUE;

end- if;
else

sit-ptr =sit-ptr +~ 1;
end-while:

if (! found)
print ("Error - match not found in GnOp");

end -if:,
else

found a valid overlap so set the parent pointer of the *
first node of the kms list to the node above the node ~
in the sit list that matched.*

head- kms-list-ptr.paren t =- sit-ptr.prev:*

walk down to the end of the status list
status-ptr = first-status-node-ptr;
while (status-ptr.next < > null')

status-ptr =status-ptr -1:

164



dli-check -requests- left()

/* This procedure accomplishes the following: ",
/* (1) Receives the message from MBDS by calling */
/* TI-R$Messageo which is defined in the Test * /
/* Interface.

" (2) Gets the message type by calling

T1-R$Tvpe. *

(3) If not all the responses to the request *7
have been returned, a loop is entered. Within *7

/ this loop a case statement separates the */
/* responses received by message type. /
/* *,'

/* "(4) If the response contained no errors, /
/* then procedure TI-R$Req-res() is called to *
/* receive the response from MBDS. */
* *1/

,* (5) If no results are returned, then */
* the boolean results-are-not-returned is -set

• to TRUE.

/ (6) If the message contained an error, /

• then procedure TI-R$ErrorMessage is called * /

• to get the error message and then procedure */
* TI-ErrRes-output is called to output the *7
- error message. /

int msg-type,
err-msg,
done:

char *response;

struct ReqID rid:

int rid:

results-are-not-returned FALSE;

done = FALSE:

178

... --- ...-- m', m...........md ..-dmmlmm.m.. .. .. ..... ... 'I .... ... .



* - . T -- r -sr -rr-- ------ ]( I I-

while (!done)
{

Tl-R$Message(;
msg-type = TI-R$Type(;
switch (msg-type)

{
case CH-ReqRes:

done = TI-R$Reg-res(&rid.response):
switch (kc-curr-pos-> Si-operation)

case GuOp:
case GnOp:
case GnpOp:

if (string length of(response) == 0)
results-are-not-returned = TRUE;

else
if (End of Request == TRUE)

{
file-results()
dli-kfs(;

}
else

file-results(:
break:

case GhuOp:
case GhnOp:
case GhnpOp:

if (string length of(response) == 0)
results-are-not-returned = TRUE;

else
if (End of Request == TRUE)
{

file-results(;

printf("operation completed");
• ." }

else
file-results(;

break:

case IsrtOp:
if (End of Request TRUE)

printf("insert accomplished");
else

if (string length of(response) == 0)
results-are-not-returned = TRUE:

else
file-results(;

179

.. ............



L

break;
case DletOp:

if (string length of(response) == 0)

results-are-not-returned = TRUE;
else

file-resultso);
break:

case SpecRetOp:
if (string length of(response) == 0)

results-are-not-returned = TRUE;
else

file- results(:
break;

case ReplOp:
if (End of Request TRUE)

printf("replace accomplished"):
else

if (string length of(response) == 0)

results-are-not-returned TRUE;
else

file-results(;
break;

" }

break:

case ReqsWithErr:
/*Handle error conditions*!

break:
}1*end switch*,'
end while'

},,"*end procedure*,'

180

.. 

.



Delete-proc (x)
struct Sit-info *x;

. This procedure accomplishes the following: ~
, (1) Is called by dli-action and deletes a

'~node and all its children.

(2) It works recursively by calling
delete-setupo. delete-setup can in turn *
call Delete~proc. Hence, mutual recur-
sion. *

kc-curr-pos = x

while (kc-curr-pos != NULL)

build-requests;.
dli-execute o:

if (there is a child node)

kc-curr-pos = kc-curr-pos->Si-child;
if (kc-curr- pos- > Si-ope ration == Gu Op)

build-requesto;
dli-execu teo;
if (results-are-not-returned)

break;
else

kc-cu rr-pos = kc-curr- pos-> Si-child;
delete- set u p(kc- curr- pos);

else
Del ete-proc (kc -curr-pos);

if (tnere is a sibling node)

kc-curr-pos =kc-curr-pos-> Si-sibling;

. . . . . .. . . . .18.1



if (kc-curr- pos- > Si-ope ration Gu Op)

build-requestO:
dli-executeo;
if (results-are-not-returned)

break;
else

kc-cu rr-pos = kc-curr-pos-> Si-child:

delete-setu p(kc-curr-pos):

else
Delete- proc (kc -c urr- pos);

}/End of if*,
y/*End of while*/

} /*njd of procedure*,/

182



delete-setup(x)
struct Sit-info 'x,

'*This procedure accomplishes the following: ;

,*(1) Sets up a base node from which we base ~
/* our recursion.

* (2) Until we hit the end of its result-File *
we keep calling Delete-proc so that all *
appropriate nodes are deleted. /

int 'buff-loc.
*buff-count:

struct hie-file-info "file-ptr:
char

kc-curr-pos = x
file-ptr kc-curr- pos-> Si-parent-> Si-result-file;
buff-loc =(file-ptr->hfi-buff-loc);

buff-count =(file-ptr-> hfi-coun t);
fid = file-ptr->hfi-buff.fi-fid:;

while (buff-loc <= buff-count)

Delete-proc(x);

skip over attribute name;
z =0:,
get the next value of the result file;
buff-loc =buff-loc -

kc-curr- pos =kc-cu rr-pos-> Si-parent;
clean-up-buffero;



Spec-ret-proc(x)
struct Sit-info *X;

/* This procedure is called when it is necessary to */
/' process special retrieves, i.e.. those retrieves */
/* where we have to retrieve a node's children as *

/ well. Hence. this procedure is patterened after *i
/* the Delete-proc procedure, i.e.. mutual recur-
/* sion. /

int done;
struct hie-file-info *file-ptr;
int buff-loc,

buff-count;

kc-curr-pos = x;
file-ptr = kc-curr-pos-> Si-result-file:
buff-oc (file-ptr->hfi-buff-loc);
buff-count = (file-ptr-> hfi-count);
done = FALSE;

while (!done)
{

build-request);
dli-executeo;
if (results-are-not-returned == FALSE)

if (there is a child node)
spec-ret-setup(k c-curr-pos-> Si-child);

if (there is a sibling node)
Spec-ret-proc (kc-curr-pos-> Si-sibling);

done = TRUE;
}

if (we are not at the end of the file)
{

close file:
open file:
buff-loc = 1:
while (buff-loc <= buff-count)

dli-kfs():

184

:, --.: ,' .-: .% -: . - .' .': , -.: : .:- -..: , . , -. . - "i , • i , : . . , .: ., ' " . .,. . . -.- " ."..'



spec-ret-setup (x)
struct Sit-info *x:

I/This procedure is similar to delete-setup in that*/
/* it establishes a base node from which our recur-

sion is based. Values are fetched from the base*
'~node's result file until an EOF is determined. ,

int buff-loc.
buff-cou nt;

struct hie-ffle-info 'file-ptr;
char
int

kc-curr-pos = x
file-ptr kc-curr- pos-> Si-parent-> Si-result-file;
buff-loc =(file- ptr- > hfi-bu ff-loc);
buff-count = (file-ptr->hfi-count);

while (buff-loc <z= buff-count)

Spec- ret-proc(x);
skip over attribute -name;
z =0:

c =getc(fid);.

get the next value from the result file
buff-loc =buff-loc 1

kc-curr- pos =kc-cu rr-pos-> Si-parent;
c lean- up- buffero:

185



retract-a-level()

7* This procedure accomplishes the following: "/
/* Simulates retracting a level in the DB * /

hierarchy. This is done by using values in
/* the previous SIT buffer to build requests */

until we either receive some results or we *
/' do not in which case we retract again. The */

stopping condition for retracting is being
at the BOR and its buffer is exhausted. *

{/

int i,
char c;
struct hie-file-info 'curr-fptr,

*prev-fptr;

int buff-loc;

curr-fpt r = kc-curr-pos- > Si-result-file;
prev-fptr = kc-curr-pos- > Si-prev-> Si-result-file;
buff-oc = (prev-fptr->hfi-buff-loc);

This is our stopping condition. *7
if ((kc-curr-pos is BOR) and

(all-elements in the result buffer have been used)
{

return(FAILURE = TRUE);
I

/* Else. we attempt to receive some results. *'

else
{

while (there are still results in the buffer to check){
pass over attribute name:
i 0:
c get a character from result file:
load hfi-curr-buff-val with the attr value:
build-request):
dli-executeG:
buff-loc = buff-loc - 1:
if (results-are-not-returned == FALSE)

{
return:

1

186



if (we were unable to obtain any results)

kc-curr-pos = kc-curr-pos-> Si-prey;
c lean-up- buffer();
retract-a-level();

clean- up-bu ffer)

This procedure accomplishes the following:
(1) Sets hf-status to RETRACTTIIME.

'(2) Resets hfi-count to 0.

struct hie-file-info *buff-ptr;
int '*buff-count.,
int *bff-lc;

buff-ptr = kc-curr-pos-> Si-result-file;
buff-count = (buff-ptr->hfi-count);
buff-loc = (buff- ptr- > hfi- bu ff-loc);

* Set status to RETRACTTIME so that current results are overwritten

buff-ptr-> hfi-status = RETRACTTIME;

,* Reset buff-count and buff-loc to 0 /

buff-count = 0;
buff-boc = 0:

buff- p tr- > hf i-curr- buff-val =NULL;
close kc-curr-pos file buffer;

187



init-buffer 0

/~This proced ure accomplishes the following:
/*(1) Copies the user's ID name into a temp
/*string.

(2) Converts the current dbi-buff-count to ~
astring.

(3) Increments the above count to reflect
,~the fact that the next time this procedure ~

is called it initialize a new buffer. *

(4) strcat above count to temp. /

' (5) strcat BUFF-FILE-SUFFIX to temp.

(6) strcpy temp over to hfi- buff. fi-fname.

char temp1FNLength - 1j;
char count TFNLength -t i-

strcpy(temp,cuser-hie-ptr- > ui-li-type.li-dli.di-curr-db .cdi-dbname);

num-to-str(count~kc-ptr-> di-buff-count);
kc-ptr- >d i-buff-count = kc-ptr- >di-buff-count +r 1;
strcat(temp.count);
strcat(tempBUF F-F ILE-SU F FIX):
strcpy (k c-curr- pos- > Si-resulIt- file-> hfi- bu ff.fi-fniame, temp);

load-tables()

This procedure accomplishes the following: >
(1) Calls dbl-template which is already
defined in the Test Interface. It loads the ~

template file. 1

(2) Calls dbl-dir-tbls() also defined in

the Test Interface. It loads the descriptor
Files.

struct rtemp-definition template-,

dbl-temp late (&template. kc-ptr- > di-ddl-iles- -'ddli-temp.fl-fld):

dbl-dir-tbls(kc-ptr- >di-ddl-files- >ddli-desc.fi-fid);,

I.



loop-handier(x)
struct Sit-info 'x-.
/' This procedure accomplishes the following:
/* (1) Determines if the hfi-count is I or less.
,/* If it is, then we need to get another value*/
/* if there is one.

*(2) Else we just empty the buffer of the
/* kc-curr-pos out.

struct hie-file-info *'file-ptr;
imt *'buff-loc,

* buff-count;

char C
int

kc-curr-pos = x
file-ptr =kc-curr- p05-> Si-prey-> Si-result-file:
buff-loc =(file- ptr- > hfx- buff-loc) :
buff-count = (file- ptr- > hf i-coun t);

while (buff-ioc <= buff-count)

loopit (kc-curr-pos);
skip over attribute name:
z = 0:
get the next value from the result file:
buff-loc =buff-oc 1

kc-curr- pos =kc-cu rr-pos-> Si-prey:
clean- u p- bu ffero:



loopit (x)
struct Sit-info *x,

kc-curr-pos = x
build- request():
dii-executeo:

if (results-are-not-returned)
return:

else
if ((kc-curr-pos->Si-next ! NULL

(kc-curr-pos-> Si-next- >Si-BOR HTRUE))

kc-curr-pos-> Si-next-> Si-result-file-> hfi-buff-Ioc I :
loop- handier (kc-cu rr-pos- > Si-next);

if (kc-curr-pos->Si-EOR ==TRUE)
while (kc-curr- pos-> Si-result-file-> hfi-buff-loc <=

kc-curr-pos- >Si-result-file-> hfi-count)
dli-kfso;

put-in-buff(instr)
char *instr:

This procedure accomplishes the following:*
Puts the incoming string form file-results */

into the correct file buffer.*

int i:

putc(instr i '.kc-curr-pos-> Si-result-file-> hfi-buff.fi-fid);

putc(' .kc-c urr-pos- > Si-resulIt-fi le- > hi.. buff. fi-fid):

190



file-results()

This procedure accomplishes the following: *

(1) Opens a file to place the results in.

(2) Keeps track of how many results have
been received. 1

(3) Puts the results in their own line.

char response.

*temp-str;
mnt *num-values,

*buff-boc,
curr-pos.
res-len:

struct hie-file-info 'file-ptr,

*Next three statements are initialization *

initialize file-ptr:
initialize buff-boc;
initialize nurn-values;

,If this is the first time then we open file for write status *
if (file- ptr- > hi-statu s ==FIRSTTIME)

init-buffero;
open file for write mode:
set hfi-status to RESTTIME;
buff-boc =buff-boc -

If hfi-status is RETRACTTIME, then must overwrite stuff in
exiting File. Thus. file is opened for write status.

else
f (file-ptr-A~ fi-st at us ==RETRACTTINME)

open ile for write mode:
set hfi-status Lo RESTTINE:
buff-loc buff-bc - 1:



1k AD-RI59 542 THE DESIGN AND IMPLENENTRTION OF A HIERRCHXCAL 3/3
I INTERFACE FOR THE NULTI-LINGUAL DATABASE SYSTEM(U)
I NAVAL POSTGRADUATE SCHOOL NONTEREY CA

UNCLASSIFIED T P BENSON ET AL. JUN 85 F/G 9/2 NEu1



I4

'IIIU'- 6 W

11111 * *4O E2.0"

11111.25 11111_L.4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 A

k,, ...... ..... . -.. . . ... , .. . . . . . -



/* If above two conditions don't hold, then just open file for

append status. */
else

open file for append status;
}

response = kc-ptr- > di-kfs-data.kfsi-hie.khi-response;
res-len = string length of(response);
curr-pos = 1:

Read first attribute from response >/

read-d li-response(first-attr,curr-pos);

* Put this attribute in buffer */

put-in-buff(first-attr);

* Read the value corresponding to this attribute */

read-dli-response(temp-str,curr-pos);

* Put this value in the buffer */

put- in-buff(temp-str):

* Increment the count of values */

num-values = num-values + 1;

• While we are not at the end of the response */
while (curr-pos < (res-len - 2))

,'. {
read-d li-response(temp-str.curr-pos);

* If the attribute name just read in is not the same as the

first attribute name previously read in, then we put it and
its value on the same line in the buffer as the first attribute

if (strcmp(first-attrtemp-str) != 0)

put- in-bu ff(temp-str);
read-dli-response(temp-str.curr-pos);
put-in-buff(temp-str);

}

192

I.'

;-::- ,. . .. . ... ... .. . ..... ........... .. ..........



/ * If they are the same, then we need to start a new line in

the buffer.*/
else

put- in-buff( "0);
put- in-buff(temp-str);
read-d li-response( temp-str,&curr-pos);

* put- in-buff(temp-str);
numn-values =numn-values +- 1;

close file;
open file;

read-d li-response(ou tstr,pos)
char *'outstr;
int Spos.,

/~This procedure accomplishes the following: *
7* Reads the next value of the response buffer. *

int i;
char *response;

*response = kc-ptr- > di- kfs-d ata. kfsi- hie. khi- response;
load outstr with the contents of response until an End Marker

is detected;
put a in outstr;

193



APPENDIX E - THE KFS PROGRAM SPECIFICATIONS

dli-kfs()
, This procedure accomplishes the following: *

'~Pulls a segment occurence from the proper *

/*buffer and displays it to the user.

char c-,

pull a value from kc-curr-pos file buffer;
print this value;
prin tf( "0);
buff-loc =buff-loc +i 1;

I'.

194



APPENDIX F - THE DL/I USERS' MANUAL

A. OVERVIEW

The DL/I language interface allows the user to input

transactions from either a file or the terminal. A

transaction may take the form of either database

descriptions of a new database, or DL/I requests against an

existing database. Database descriptions may only be input

frpm a file, while DL/I requests may be input from either a

file or the terminal. The DL/I language interface is menu-

driven. When the transactions are read from either a file

or the terminal, they are stored in the interface. If the

transactions are database descriptions, they are executed

automatically by the system. If the transactions are DL/I

requests, the user is prompted by another menu to

selectively choose an individual DL/I request to be

processed. The menus provide an easy and efficient way to

allow the user to view and select the methods in which to

process DL/I transactions. Each menu is tied to its

predecessor, so that by exiting each menu the user is moved

up the "menu tree". This allows the user to perform

multiple tasks in a single session.

B. USING THE SYSTEM

There are two operations the user may perform. The user

may either define a new database or process requests against

an existing database. The first menu displayed prompts the

195

• " """- "-.. ', .; '"• ' .- '-. " " "' "* - '." -. ' * . ". a. "" * '''' ''''-'''



user f or an operation to perform. This menu, hereafter

*referred to as MENUl, looks like the.-Following:

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION ---- >

Upon selecting the desired operation, the user is

prompted to enter the name of the database to be used. When

loading a new database, the database name provided may not

presently exist in the database schema. Likewise, when

processing requests against an existing database, the

database name provided has to exist in the present database

schema. In either case, if an error occurs, the user is

told to rekey a different name. The session continues once

a valid name is entered.

If the "p" operation is selected from MENUl, a second

meuis displayed that assfrtemd finput. This

input may come from a data file or interactively from the

terminal. This generic menu, MENU2, looks like the

following:

Enter mode of input desired
Mf - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION ---- >

196



If users wish to read transactions from a file, they are

prompted to provide the name of the file that contains those

transactions. If userswish to enter transactions directly

from the terminal, a message is displayed reminding them of

the correct format and special characters that are to be

used.

If the "1" operation is selected from MENU1, a second

menu is displayed that is identical to MENU2 except that the

"t' option is omitted. Since the transaction list stores

both database descriptions and DL/I requests, two different

access methods have to be employed to send the two types of

transactions to the KMS. Therefore, our discussion branches

to handle the two processes the user may encounter.

1. Processing Database Descriptions (DBDs)

When the user has specified the filename of DBDs,

further user intervention is not required. It does not make

sense to process only a single DBD out of a set of DBDs that

produce a new database, since they all have to be processed

at once and in a specific order. Therefore, the mode of

input is limited to files, and the transaction list of DBDs

is automatically executed by the system. Since all the DBDs

have to be sent at once to form a new database, control

should not return to MENU2 where further transactions may be

input. Instead, control returns to MENU1 where the user may

select a new operation or a new database to process against.

197



2. Processina DL/I Reguests

In this case, after users have specified the mode of

input, they conduct an interactive session with the system.

First, all DL/I requests are listed to the screen. As the

DL/I requests are listed from the transaction list, a number

is assigned to each DL/I request in ascending order starting

with the number one. The number is printed on the screen

beside the first line of each DL/I request. Next, an access

menu, called MENU3, is displayed which looks like the

following:

Pick the number or letter of the action desired

(num) - execute one of the preceding DL/I requests
(d) - redisplay the list of DL/I requests
(r) - reset the currency pointer to the root
(x) - return to the previous menu

ACTION ---- >

One selection from MENU3 needs further explanation. The "r"

selection causes the currency pointer to be repositioned to

the root of the hierarchical schema so that subsequent

requests may access the complete database. Examples of the

need to utilize this option are: before executing DL/I GUs

or ISRTs.

Since the displayed DL/I requests may exceed the

vertical height of the screen, only a full screen of DL/I

requests are displayed at one time. If the desired DL/I

request is not displayed on the current page, the user may

198



depress the RETURN key to display the next page of DL/I

requests. If the user only desires to display a certain

number of lines, after the first page is displayed the user

may enter a number, and only that many lines of DL/I

requests are displayed. If users are only looking for

certain DL/I requests, once they have found them, they do

not have to page through the entire transaction list. By

depressing the "q" key, control is broken from listing DL/I

requests, and MENU3 is displayed. Under normal conditions,

when the end of the transaction list has been viewed, MENU3

appears.

Since DL/I requests are independent items, the order

in which they are processed does not matter. The users have

the choice of executing however many DL/I requests they

desire. A loop causes the transaction list and MENU3 to be

redisplayed after each DL/I request has been executed so

that further choices may be made. Unlike processing DBDs,

control returns to MENU2 since the user may have more than

one file of DL/I requests against a particular database, or

the user may wish to input some extra DL/I requests directly

from the terminal. Once the user is finished processing on

this particular database, the user may exit back to MENU1 to

either change operations or exit to the operating system.

199



C. DATA FORMAT

When reading transactions from a file or the terminal,

there has to be some way of distinguishing when one

transaction ends and the next begins. Transactions are

allowed to span multiple lines, as evidenced by a typical

multi-level DL/I GU followed by a GN. This example also

shows that our definition of transaction incorporates one or

more requests. This allows a group of logically related

requests to be executed as a group. When a transaction

contains multiple requests, each request has to be separated

by an end-of-request flag. In our system this flag is the

"!' character. Since the system is reading the input line

by line, an end-of-transaction flag is required. In our

system this flag is the "@" character. Likewise, the

system needs to know when the end of the input stream has

been reached. In our system the end-of-file flag is

represented by the "'$" character. The following is an

example of an input stream with the necessary flags that are

required when multiple transactions are entered:

200



TRANSACTION #1

TRANSACTION #2
REQUEST #1

REQUEST #2

REQUEST #n

TRANSACTION #3

TRANSACTION #n
$

D. RESULTS

When the results of the executed transactions are sent

back to the user's screen, they are displayed exactly the

same way individual DL/I requests are displayed (see Section

B.2). The following consolidates the user's options:

---------------------------------

KEY FUNCTION
+-----------------------------------------

return Displays next screenful of output

(number) Displays only (number) lines of output

q Stops output, MENU1 is then redisplayed

+-------------------------------

201

.......................... 7



LIST OF REFERENCES

1. Demuriian, S. A. and Hsiao, D. K., "New Directions in
Database-Systems Research and Development," in the
Proceedings of the New Directions in Comrnying
Conference, Trondheim, Norway, August, 1985; also in
Technical Report, NPS-52-85-001, Naval Postgraduate
School, Monterey, California, February 1985.

2. Banerjee, J., Hsiao, D. K., and Ng, F., "Database
Transformation, Query Translation and Performance
Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on
Software Engineering, March 1980.

3. Weishar, D. J., Ihe Design and Analysis of a Com2lete
Hierarchical Interface for a Multi-Backend Database
gystem, M. S. Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

4. Hsiao, D. K., and Harary, F., "A Formal System for
Information Retrieval from Files," Communications of
the ACM, Vol. 13, No. 2, February 1970, also in
Corrigenda, Vol 13., No. 4, April 1970.

5. Wong, E., and Chiang, T. C., "Canonical Structure in
Attribute Based File Organization," Communications of
the ACM, September 1971.

6. Rothnie, J. B. Jr., "Attribute Based File Organization
in a Paged Memory Environment," Communications of the
ACM, Vol. 17, No. 2, February 1974.

7. The Ohio State University, Columbus, Ohio, Technical
Report No. OSU-CISRC-TR-77-7, DBC Software Reguirements
for SunegCting Relational Databases, by J. Banerjee and
D. K. Hsiao, November 1977.

8. Naval Postgraduate School, Monterey, California,
Technical Report, NPS52-85-002, A Multi-Backend
Database System for Performance Gains, Capacity Growth
and Hardware Gains, by S. A. Demurjian, D. K. Hsiao and
J. Menon, February 1985.

9. IBM Corporation, Information Management System/Virtual
Storage 8Q9 22ition Programming Reference Manual, IBM
Form No. SH20-9026.

10. Boehm, B. W., Software Engineering Economics,
Prentice-Hall, 1981.

202

1 -1 -. . .-C' >22:. - .* -i i o . - . *1 " - i



11. Naval Postgraduate School, Monterey, California,
Technical Reot NPS52-84-012, Software Engineering
Technigues f or LarEg-Sale Database Systemsl as A22lied
to the I m~l ementation of a Mu.ltiBackeid Database
Qystern, by Ali Orooji, Douglas K~err and Daivid K.
Hsiao, August 1964.

12. The Ohio State University, Columbus, Ohio, Technical
Report No. OSU-CISRC-TR-82-11 Te I mglemen tat ion of a
Multi Backend Database System (MDBS): Part I - Software
gn~gineering Stra2tegies and Efforts Towards a Prototy22
MDBS, by D. S. Kerr et al, January 1982.

13. Kernighan, B. W., and Ritchie, D. M., The C Progra mming
Langugeg, Prentice-Hail, 1976.

1 4. Howden, W. E., "Reliability of the Path Analysis and
Testing Strategy," IEEE Transactions on Software
gogineering, Vol. SE-2, September 1978.

15. Johnson, S. C., Yacc: Yet Another Compil1er-Comgil1er,
Bell Laboratories, Murray Hill, New Jersey, July 1978.

16. Lesk, M. E. and Schmidt, E., Lex - A Lexical Anal y-:e
Generator, Bell Laboratories, Murray Hill, New Jersey,
July 1978.

17. Date, C. J., An Introduction to Database Systems, --d
ed., Addison Wesley, 1962.

16. Shienbrood, E., More - A File Persual Filter for CRT
Viewing, Bell Laboratories, Murray Hill, New Jersey,
July 1976.

19. Kloepping, 6. R., and Mack, J. F., The Design! and
IMRleMgntation of a Relational Interface fror the
Multi-Lingual Database Systgem M. S. Thesis, Naval
Postgraduate School, Monterey, California, June 1965.



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Curriculum Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5100

5. Professor David K. Hsiao, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. Steven A. Demuriian, Code 52 .2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

7. Timothy P. Benson 3
P. 0. Box 1974
Woodbridge, Virginia 22193

8. Gary L. Wentz 3
111 Appian Way
Pasadena, Maryland 21122

9. Gary R. Kloepping 2
Route 1, Box 99
Santa Rosa, Texas 78593

10. John F. Mack 2
2934 Emory Street
Columbus, Georgia 31903

204

........................
.¢..- 2' A:.Q. ~:



.- . .-..-

F.

FILMED

11-85

DTIC
.. ...: ...- .. ., - ..- .. ,, , .t ' .; - ,, ., . ., - ,,-j ~ t .. .. ..,., .,,,- ,,,.,,.. . .-.... .... 
. . . .,.. . .,.. . . . . .,.. .,.... . . . .... ...... . ... .- .. . . . .. .. , ' -"' . '-


